スピンホール磁気抵抗効果を用いた Cr₂O₃ 薄膜のネール点検出

Resistive detection of the Néel temperature of Cr2O3 thin films

京大化研¹, 阪大工² ○(M2)飯野 達也¹, 森山 貴広¹, 岩城 宏侑¹, 青野 晃², 白土 優², 小野 輝男¹

Institute for Chemical Research, Kyoto Univ. ¹, Osaka Univ. ², ^oTatsuya Iino¹, Takahiro Moriyama¹, Hiroyuki Iwaki¹, Hikaru Aono², Yu Shiratsuchi², Teruo Ono¹

E-mail: iino.tatsuya.42r@st.kyoto-u.ac.jp

Although bulk magnetic properties of various antiferromagnets have been vigorously studied since long ago, their properties in the form of thin films, which are more relevant to antiferromagnetic spintronic devices, have not been investigated as much. In this work, we characterized the Néel temperature of Cr_2O_3 thin films by investigating the temperature dependence of the spin Hall magnetoresistance (SMR) in Cr_2O_3/Pt bilayers.

We prepared Cr_2O_3/Pt bilayers epitaxially grown on a single crystal α -Al₂O₃ substrate. We performed the resistance ratio measurements shown in Fig. 1 (a) in order to sensitively detect the resistance change up on the magnetic phase transition. We employed Cr_2O_3 films with the magnetic easy axis parallel to the y direction. Fig.1 (b) shows the temperature dependence of (V_1/V_2) -1. The drastic change in (V_1/V_2) -1 around 300 K is associated with the resistance change due to SMR up on the magnetic phase transition and it corroborates the Néel temperature of Cr_2O_3 (cf. 307 K is reported for the bulk.). The results provide a reliable way to determine the Néel temperature of antiferromagnetic thin films.

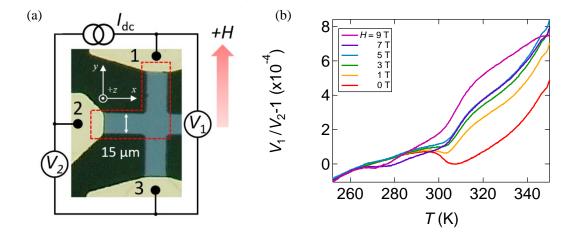


Figure 1 (a) Microscopy image of the device under test with the electrical circuitry used in our measurements. (b) Temperature dependence of (V_1/V_2) -1.