低圧 RF 容量結合型炭化水素プラズマによる DLC 膜堆積モデルの構築

Development of Deposition Model of DLC Film

using Low-Pressure Capacitively-coupled Hydrocarbon Plasma

千葉工業大学¹,名城大学²,岐阜大学³

°(M1)小川 慎¹, 小田 昭紀¹, 太田 貴之², 上坂 裕之³

Chiba Institute of Technology¹, Meijo University², Gifu University³

^oShin Ogawa¹, Akinori Oda¹, Takayuki Ohta², Hiroyuki Kousaka³

E-mail: s1422073vg@s.chibakoudai.jp

1. 背景

ダイヤモンドライクカーボン (Diamond-Like Carbon 以下 DLC) 膜は機械部品のしゅう動部の摩擦特性改善 やドリル先端部の高硬度化など,成膜条件によって 様々な特性が得られる特徴がある.DLC 成膜手法の1 つ容量結合型プラズマによるプラズマ支援化学気相成 長 (Plasma Enhunced Chemical Vapor Deposition 以下 PECVD) 法は DLC 膜の平滑性,付き回り性の高さか ら産業応用が進められてきた.一方で DLC 成膜の制 御法はトライ&エラーが主流であり,プラズマ外部パ ラメータと DLC 成膜との相関関係の知見が少ない^[1].

本稿ではDLC成膜の制御技術向上のためPECVDに よる DLC 膜堆積モデルを構築し、堆積速度と水素含 有率の計算を行ったのでその結果を報告する.

2. PECVD による DLC 膜堆積のモデリング

本稿で用いたプラズマ CVD モデルはプラズマと DLC 膜堆積の2つのモデルで構成した. プラズマモデ ルは過去に構築したものを使用した^[2].

Fig.1 に本研究で用いた DLC 成膜モデルの概略図を 示す.本モデルでは成膜を巨視的な視点で捉えること で膜厚や粒子含有率の計算が可能な現象論的モデルを 用いた^[3].膜の堆積は Fig.2 に示すように気相中の粒子 と膜表面の粒子との反応による粒子の吸着や脱離によ って進行する.気相中から膜表面に飛来する粒子はプ ラズマシミュレーションから得られた電極近傍での粒 子フラックスの値を用いた.DLC 膜厚は堆積した炭素 の粒子数密度と DLC の格子間距離,水素含有率は膜 中の炭素と水素の数密度から計算を行った.

3. 結果および考察

Fig.3 に電極間距離 2.54 cm, 電力 1.0 Wcm⁻³, ガス圧力 1.0 Torr, ガス流量 100 sccm, CH4 混合比 10~50%にお ける DLC 膜堆積速度の CH4 ガス混合比依存性を示す. CH4 混合比が増加に伴い DLC 膜堆積速度の低下が見 られるが,これは Ar ガス混合比の増加によって Ar⁺の 粒子フラックスが増加し, DLC 膜表面の水素をスパッ タすることで炭化水素ラジカルが付着するためのダン グリングボンド形成反応が促進されたためである.そ の他,結果の詳細は発表当日に報告する.

Fig.1 Schematic diagram of phenomenological DLC deposition model

Fig.2 DLC deposition mechanisms by plasma enhunced CVD

Fig.3 Gas mixing ratio dependence of DLC deposition rate

謝辞

本研究は、日本学術振興会・科学研究補助金 (16H04256)の支援を受けて行われた.ここに謝意を 表す.

ليم I	
1	22.1
x.	ITIA
~	114/ 1

- M. Hiratsuka, A. Tanaka, "Coating Technology of High-Performance DLC Films and Industrial Application", *J. Vac. Soc. Jpn.*, Vol. 58, No. 6 (2015)
- [2] 小川他、「DLC 成膜用炭化水素プラズマの計算機シミュレーションと質量分析による測定」、平成 30 年 電気学会全国大会、1407-A2 1-070 (2018)
- [3] T. I. Farouk, "Modeling and Simulations of DC and RF Atmospheric Pressure Non-thermal Micro Plasma Discharges: Analysis and Applications", PhD Thesis, Drexel University (2009)