PAMBE による m 面サファイア基板上 α -Ga₂O₃の成長

Stabilization of α -Ga₂O₃ on m-plane α -Al₂O₃ by Plasma-Assisted MBE

Cornell Univ., °*Riena Jinno¹, Yongjin Cho, Kevin Lee, Vladimir Protasenko,

Huili Grace Xing, and *Debdeep Jena

*E-mails: jinno.riena.68a@kyoto-u.ac.jp, djena@cornell.edu

Metastable α -Ga₂O₃, which has the rhombohedral corundum structure, has attracted a lot of interest in recent years, because its alloys with α -In₂O₃ and α -Al₂O₃ (sapphire) allow wide bandgap engineering from 3.7 to 8.7 eV [1]. Very recently, it has been demonstrated that binary single phase α -Al₂O₃/Ga₂O₃ superlattices can be coherently grown on r-plane sapphire by MBE [2]. However, the growth of thick isomorphic α -Ga₂O₃ is challenging as the stabilization of α -Ga₂O₃ is limited by the formation of the thermodynamically most stable phase β -Ga₂O₃, which was found to depend on the orientation of sapphire surface [3]. In this research, by comparatively studying Ga₂O₃ grown on r- and m-plane sapphire, we show that α -Ga₂O₃ is considerably better stabilized on m-plane sapphire.

Ga₂O₃ was grown on r- and m-plane sapphire substrates by oxygen plasma-assisted MBE, at a substrate thermocouple temperature of 650°C. The r-plane sapphire substrate was annealed at 1050°C in air in order to obtain atomic steps in the surface morphology. Single phase epitaxial α -Ga₂O₃ is confirmed by the XRD (Fig.1). The (αhv)²-hv Uv-vis transmission spectra of the Ga₂O₃ films have two step-like onsets (Fig.2), which has been described earlier as two allowed direct transitions with excitonic effects in the α -Ga₂O₃ (5.61 and 6.44 eV) [4]. The XRD and in situ RHEED patterns [Fig. 1 (a) and (c)] confirm that isomorphic α -Ga₂O₃ was stabilized on m-plane sapphire up to a film thickness of ca. 200 nm. On the other hand, RHEED patterns of Ga₂O₃ grown on r-plane sapphire revealed the inclusion of β -Ga₂O₃ phases [Fig.1 (d)]. These results suggest that m-plane sapphire is more suitable for the growth of thick α -Ga₂O₃ films. The explanation of the enhanced stability of α -Ga₂O₃ [5] and when Ga₂O₃ is grown on m-plane sapphire, unlike c- and r-plane sapphire, the c-plane is exactly perpendicular to the growth direction and therefore the c-plane facet can be greatly shadowed from growth.

S. Fujita, *et. al.*, Jpn. J. Appl. Phys. **55**, 1202A3 (2016).
T. Oshima, *et.al.*, Appl. Phys. Express **11**, 065501 (2018).
Z. Cheng, *et. al.*, Appl. Phys. Lett. **111**, 162104 (2018).
A. Segura, *et. al.*, Phys. Rev. Materials **1**, 024604 (2017).
M. Kracht, *et. al.*, Phys. Rev. Applied **10**, 024047 (2018).

Fig. 1. Symmetric XRD $2\theta/\omega$ scans and RHEED patterns of Ga₂O₃ grown on [(a) and (c)] m-plane and [(b) and (d)] r-plane sapphire.

Fig. 2. Optical transmission and (inset) the corresponding $(\alpha hv)^2$ -hv plots of Ga₂O₃ of similar thicknesses on r-plane (blue dashed lines) and m-plane sapphire (red solid lines). The results of β -Ga₂O₃ (black dotted lines) are shown for comparison.

¹ On leave from Kyoto Univ.