Reduced strain by cesium addition leading to the improvement in the efficiency of tin-lead mixed perovskite solar cells

The University of Tokyo¹, Kyushu Institute of Technology², University of Electro Communication³,

National Institute of Advanced Industrial Science & Technology⁴

°Gaurav Kapil¹, Takeru Bessho¹, Chi Huey Ng², Kengo Hamada², Takumi Kinoshita¹, Qing Shen³, Taro Toyoda³, Takurou N. Murakami⁴, Hiroshi Segawa¹, Shuzi Hayase²

E-mail: kapil@dsc.rcast.u-tokyo.ac.jp

Introduction

Tin-lead (Sn-Pb) perovskite solar cells (PSCs) can attain higher power conversion efficiency (PCE) than pure Pb based PSCs, owing to their ideal band gap (1.2 eV-1.4 eV) according to the Shockley Queisser (SQ) limit [1,2]. However, being a low band gap material and prone to oxidation of Sn^{2+} to Sn^{4+} , Sn-Pb solar cells suffer from voltage loss (V_L). To decrease the V_L, we have already introduced a spike like structure which led to a PCE of 17.6%[3]. To further decrease V_L, in this work we demonstrate that Cesium ion (Cs⁺) incorporation into the lattice of Sn-Pb absorbers can relax the strained lattice. As a result, open circuit voltage (Voc)>0.8 V and PCE >20% was obtained.

Experiment

 Cs^+ added triple cation-based Sn-Pb perovskite was prepared. $Cs_xFA_{1-x}SnI_3$ (1.2 M) and MAPbI₃(1.2 M) were prepared in separate vials and then mixed. The precursor of $Cs_xFA_{1-x}SnI_3$ was prepared by adding 1.2x M cesium iodide, 1.2 (1-x) M FAI, 1.2 M SnI₂, and 0.12 M SnF₂ in 4:1 volume ratio of anhydrous DMF and anhydrous DMSO. 1.2x M of CsI was obtained from a stock solution of 1.5 M CsI prepared in anhydrous DMSO.

Results and discussion

"A" position of a typical ASn_{0.5}Pb_{0.5}I₃ perovskite was filled partly by methyl ammonium (MA⁺), formamidinium (FA⁺) and Cesium (Cs⁺), and an optimized perovskite recipe Cs_{0.025}FA_{0.475}MA_{0.5}Sn_{0.5}Pb_{0.5}I₃ was obtained. Fig1. shows that Voc can be improved from 0.76 V to 0.81 V by the addition of Cs⁺ and best PCE of 20.4% was achieved.

Reference

- 1. D. Zhao & Y. Yan et al, Nat. Energy., 2017, 2, 1-7.
- W. Shockley, H. J. Queisser, J. Appl. Phys. 1961, 32, 510.
- **3.** G. Kapil and S. Hayase et al., *Nanoletters*, 2018, 18, 3600-3607.

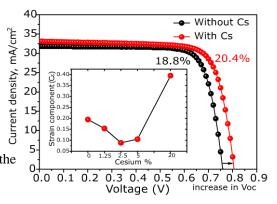


Fig1. IV characteristics showing a 20.4 % efficient Sn-Pb mixed PSC. Inset shows the variation of strain with different concentration of Cs