NH₃雰囲気中で合成した Y₄Si₂O₇N₂: Eu³⁺赤色蛍光体の EXAFS 解析

EXAFS analysis of Y₄Si₂O₇N₂ : Eu³⁺ red phosphors synthesized in NH₃

鳥取大学¹,徳島文理大学²,高輝度光科学研究センター³

○(M1)川島 美沙¹, (M2)中本 広大¹, (B)木下 顕¹, (B)幡中 悠一郎¹,

石垣 雅¹, 國本 祟², 本間 徹生³, 大観 光徳¹

Tottori Univ.¹, Tokushima Bunri Univ.², JASRI³

^oM. Kawashima¹, K. Nakamoto¹, K. Kinoshita¹, Y. Hatanaka¹,

T. Ishigaki¹, T. Kunimoto², T. Honma³, K. Ohmi¹

Tel: (0857)31-6700 E-mail: ohmi@tottori-u.ac.jp

<u>1. 背景</u>

我々は、NH₃雰囲気中、1350℃での固相反応法により Y₄Si₂O₇N₂母体への Eu³⁺付活を検討してきた[1]. これまでに、作製試料から Eu³⁺による赤色発 光と近紫外領域にブロードな CTS 励起帯を確認している. その CTS ピー ク波長に対応するエネルギー値は 3.61 eV であり、これは La₂O₂S:Eu³⁺の 3.58 eV に近い. しかし、Eu³⁺が Y₄Si₂O₇N₂母体に付活されている確証はなか った. そこで本研究では、Rietveld 解析より精密化した構造パラメータから 導いた Y³⁺を中心とするクラスターモデルと、EXAFS の Fitting 結果から導 いた Eu³⁺局所構造モデルを比較することで、Eu³⁺の置換サイトを考察した.

<u>2. 実験方法</u>

Rietveld 解析プログラムシステム RIETAN-FP[2]を利用して, 粉末回折デ ータから Y₄Si₂O₇N₂の構造パラメータを精密化した.

XAFS 測定は透過法で測定し, Eu-L_{III} 吸収端を対象とした. EXAFS の Fitting は, QFS(Quick-First-Shell fit) 計算による Eu 局所構造から Artemis に 実装されている FEFF プログラム[3]を用いて行った. なお, Fitting range は 1.3-2.5 Å とし, 第1 近接のみ Fitting を行った.

3. 実験結果と考察

Figure 1 に 作製試料の Rietveld 解析結果を示す. 信頼因子は R_{wp} =8.63, R_p =5.95, S=1.84 である. このとき, アニオンの占有率は精密化しておらず, その温度因子は 0.1 とした. 精密化したセルパラメータは空間群 P121/c1(No.14)に属する単斜晶系 Y₄Si₂O₇N₂結晶である. 格子パラメータは, a=7.57Å, b=10.47Å, c=10.73Å であり, α = γ =90°, β =110.11°である. Figure 2 に, 精密化した構造パラメータから描画した Y₄Si₂O₇N₂ 結晶における Y(I)-(IV)サイトの第1近接クラスターをそれぞれ示す. Fig. 2 中に Y(I)-(IV) サイトの配位数および Y-O/N 間の平均距離もそれぞれ示す. Y(I), (II), (IV) サイトはO/N原子が7配位で, その平均結合距離はそれぞれ2.46Å, 2.34Å, 2.38Å であるのに対して, Y(III)サイトのみ6配位で, 2.42Å である.

まず XANES 解析より, 作製試料中の Eu はほぼ 3 価 (存在比率 99%) であることを確認した. その上で同試料の EXAFS 解析を行い, Figure. 3 の 実線に示すような動径構造関数を得た. この動径構造関数に対し QFS 計 算による Fitting を行った. 計算モデルを単純化させるため, O と N の散乱 因子がほぼ等しいことを考慮し, 吸収元素-散乱元素は Eu-O のみと仮定し た. Figure 3 の 印に示すとおり, Fitting は良好で, その R-factor は 0.012 で あった. さらに標準試料 Eu₂O₃ を参照として, Fitting によって得られた intrinsic loss factor (S₀²)を用いて作製試料の Eu-O 平均結合長と配位数を算 出したところ, それぞれ 2.33 Å, 4.8 と求まった.これらの結果は, 上述の Rietveld 解析結果とそれほど矛盾しない. 以上より, Eu³⁺は Y₄Si₂O₇N₂結晶 の Y サイトに付活されている可能性が高いと考えられる.

<u>4. 謝辞</u>

XAFS 測定は, SPring-8 BL14B2(課題番号: 2017A1818, 2018A1786)にて 行われた. Rietveld 解析のご助言を頂いた新潟大学 佐藤峰夫名誉教授, 高 知大学 長谷川拓哉助教に感謝します.

<u>5. 参考文献</u>

[1] K. Nakamoto et al., 25th Int. Display Workshops, December, 2018, PHp2-3L

- [2] F. Izumi et al., Solid State Phenom ., 130, 15 (2007)
- [3] B. Ravel et al., J. Synchrotron Rad., 12. 537 (2005)

Fig.1 Rietveld refinement pattern

Fig.2 Local structures around Y sites

Fig. 3 RSFs of EXAFS oscillation spectra