二次元ナノアンテナ導入による格子ゲート構造 プラズモニック THz ディテクタの偏光特性制御

Controlling Polarization Characteristics of

A Grating-Gate Plasmonic THz Detector by Introduction of 2D Nanoantennas 東北大学電気通信研究所¹,東北大学国際集積エレクトロニクス研究開発センター²,

理化学研究所光量子工学研究 $\frac{\mathbf{v} \cdot \mathbf{v} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}$ 「齋藤 琢 1 ,鈴木 雅也 1 ,細谷 友崇 1 ,末光 哲也 2 ,

瀧田 佑馬³,伊藤 弘昌³,南出 泰亜³,尾辻 泰一¹,佐藤 昭¹

RIEC, Tohoku Univ. ¹, CIES, Tohoku Univ. ², RIKEN Center for Advanced Photonics. ³, °T. Saito ¹, M. Suzuki ¹, T. Hosotani ¹, T. Suemitu ², Y. Takida ³, H. Ito ³, H. Minamide ³, T. Otsuji ¹, A. Satou ¹ E-mail: saitotk@riec.tohoku.ac.jp

はじめに テラヘルツ (THz) 帯無線通信の実 現に向けて、電界効果トランジスタ・チャネル 内の二次元プラズモンを活用した THz ディテ クタが注目されている[1]. 我々は、非対称二 重格子ゲートを有する InP 系高電子移動度ト ランジスタ (Asymmetric Dual-Grating-Gate High-Electron-Mobility Transistor; A-DGG HEMT) の開発を行い、その高い検出感度を実 証してきた[2]. A-DGG HEMT はチャネル長方 向(ソース・ドレイン方向)に周期性を持つ一 次元金属格子ゲートを有しており, 二種類のゲ ート電極が交互にかつ非対称に配置されてい る. この構造により, 入射 THz 波と二次元プ ラズモンを高効率に結合させ, 広帯域かつ高感 度な THz 波検出を実現している[2]. しかしな がら一次元格子ゲート構造では、入射 THz 波 偏光のうちチャネル長方向成分のみが二次元 プラズモンと広帯域に結合可能であり, チャネ ル幅方向の偏波に対してはゲート電極が半波 長ダイポールアンテナとして機能する狭帯域 での結合に留まる. 従って大半の周波数成分に 対してその偏光特性は,チャネル幅方向の偏光 では出力光電圧がゼロに近づく八の字型を示 すことが報告されている[3]. そこで本稿では、 二重格子ゲート構造の一つのゲートを二次元 ナノアンテナ構造に置き換えた新規ディテク タの試作・評価を行い、ナノアンテナ導入によ ってチャネル幅方向の偏光に対しても広帯域 な検出が可能になることを確認した.

デバイス試作 二次元ナノアンテナ構造のディテクタを試作した(図 1(a)). 基板には InAs コンポジットチャネルの InP 系 HEMT 用エピタキシャル基板を用いた. ゲート部のパラメータは,ゲート長 $L_{\rm S}=800~{\rm nm}$,各ナノアンテナ長 $L_{\rm N}=200~{\rm nm}$,ナノアンテナ間隔 $d_{\rm N}=250~{\rm nm}$,ゲート間隔を

それぞれ $d_1 = 300$ nm, $d_2 = 900$ nm とした. 実験結果 試作したディテクタの THz 波に対 する偏光特性測定を, 周波数 0.8 THz の疑似 CW パルス波を用いて行った. 0 度をチャネル 幅方向とし、0~90度まで偏光角を変えて測定 した。その結果、従来型 A-DGG HEMT が有す る八の字型の特性とは異なり、0度と90度に ピークを持つ十字型の検出感度特性が得られ た (図 1(b)). 特に, 0 度に検出感度ピークを 有することから,二次元ナノアンテナ構造の導 入によってチャネル幅方向の偏光とチャネル 長方向の二次元プラズモンが結合しているこ とが示唆される. また, 二次元ナノアンテナの 形状や間隔を変えることによる, 偏光特性の制 御可能性が示唆される. 異なるナノアンテナ形 状と間隔での偏光特性の違いについても評価 したので、当日報告する.

謝辞 本研究の一部は、JSPS 科研費 18K04277 の支援により行われた. ディテクタの試作は、東北大学電気通信研究所付属ナノ・スピン実験施設において行われた.

参考文献

- [1] M. Dyakonov and M. Shur, IEEE Trans. Electron Devices **43**, 380 (1996).
- [2] Y. Kurita *et al.*, Appl. Phys. Lett. **104**, 251114 (2014).
- [3] D. Coquillat et al., Opt. Exp. 18, 6024 (2010).

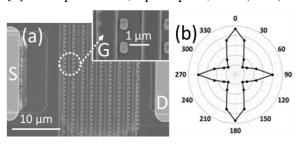


図1. 新規ディテクタの(a)SEM像および(b)出力光電圧の偏光特性.