Si系トポロジカルフォトニクス伝送路における導波モード解析

Mode analysis of Si-based topological edge state waveguide 各務響¹, 雨宮智宏^{1,2}, 齋藤孝一¹, 田中真琴¹, 増田佳祐¹, 西山伸彦^{1,2}, 胡暁³, 荒井滋久^{1,2} °H. Kagami¹, T. Amemiya^{1,2}, K. Saito¹, M. Tanaka¹, K. Masuda¹, N. Nishiyama^{1,2}, X. Hu³, and S. Arai^{1,2} 東京工業大学 工学院 電気電子系¹ 科学技術創成研究院 未来産業技術研究所² 物質材料研究機構 国際ナノアーキテクトニクス研究拠点³

¹ Department of Electrical and Electronic Engineering, Tokyo Institute of Technology ² Institute of Innovative Research (IIR), Tokyo Institute of Technology ³WPI-MANA, National Institute for Materials Science E-mail: <u>kagami.h.aa@m.titech.ac.jp</u>

1. はじめに

トポロジカル絶縁体やワイル半金属などにおける 電子系のトポロジーをフォトンの系にトレースする 試みは、トポロジカルフォトニクス[1]と呼ばれ、 近年急速に進展している。特に、C₆対称性を有する 誘電体が蜂の巣格子状に配列された構造における Z₂ トポロジーの発現[2]は、特殊な光伝搬が可能なト ポロジカルエッジ状態を実現できることから様々な 応用が期待されている[3]。そのような中、我々は 従来型の光回路にトポロジカルフォトニクス系を導 入することを目指している。

今回、トポロジカルフォトニクス系において最も 基本となる構成要素であるSi系トポロジカルエッジ 伝送路の断面を含む導波モードを時間領域差分法 (FDTD法)により解析したので、ご報告する。

2. Si 系トポロジカルエッジ伝送路の解析

素子の概要を Fig. 1(a)に示す。本素子は SOI ウェ ハ上に C₆ 対称性を有するナノホールを蜂の巣格子 状(周期 a = 800 nm) に配置した構造となっている (素子断面は Fig. 1(b)を参照)。

ナノホールの構造を Fig. 2(a)に示す。本研究では 蜂の巣格子の中心からナノホールの中心までの距離 rおよびナノホール 1 辺の長さ lをパラメータとし た。Fig. 2(b)に、計算された自明なフォトニック結 晶(PhC)とトポロジカルな PhC のバンド図を示す。 このとき、 Γ 点においてp波とd波の電磁モードが バンド反転を起こしていることが見て取れた。

Fig. 3(a)に、FDTD法によって計算されたトポロジ カルエッジ伝送路(自明な PhC とトポロジカルな PhC の境界)近傍の磁界分布(H_y)を示す。電磁場 はエッジに局在しており、このとき Fig. 3(b)に示す ように、特に a, β ではポインティングベクトルは、 ほぼ z 軸方向に平行であり、擬スピン状態で重みを 付けた電磁エネルギー流の存在に起因する逆向きの 流れがあると予想される。Fig. 3(c)に、 a, β での電 界・磁界・エネルギー密度の断面モード分布を示す。 それぞれのモード分布の解析結果から、上記を裏付 ける現象を観測することができた。

謝辞

本研究は、JST CREST (JPMJCR18T4, JPMJCR15N6), JSPS 科研費 (#15H05763, #16H06082)の援助により行われた。

参考文献

Fig. 3. (a) Calculated magnetic field H_{y} . (b) Schematic image of energy density vector. (c) Cross section of calculated energy density along (left) α and (right) β .

- [1] L. Lu et al., Nature Photon. 8, 821 (2014).
- [2] L.-H. Wu and X. Hu, Phys. Rev. Lett. 114, 223901 (2015).
- [3] T. Ozawa *et al.*, arXiv:1802.04173 (2018).