熱誘起磁気異方性変化による巨大スピントルクダイオード効果

Giant spin-torque diode effect induced by heat induced magnetic anisotropy change 阪大基礎工¹, 阪大 CSRN², TDK 株式会社³ ⁰後藤 穣^{1,2}, (M1)山田 侑馬¹, 志村 淳³, 鈴木 健司³, 出川 直通³, 山根 健量³, 青木 進³, 占部 順一郎³, 原 晋治³, 鈴木 義茂^{1,2}

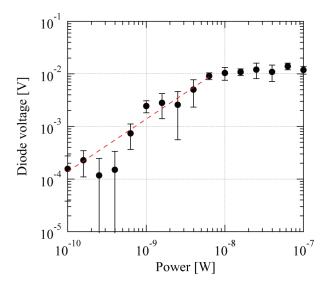
Osaka Univ.¹, CSRN-Osaka², TDK corporation³, ^oMinori Goto^{1,2}, (M1)Yuma Yamada¹,

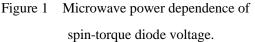
Atsushi Shimura³, Tsuyoshi Suzuki³, Naomichi Degawa³, Takekazu Yamane³, Susumu Aoki³,

Junichiro Urabe³, Shinji Hara³, and Yoshishige Suzuki^{1, 2}

E-mail: goto@mp.es.osaka-u.ac.jp

Magnetic tunnel junctions (MTJs) have been promising device for application in microwave frequency region, such as spin-torque diode effect [1]. Recently, Miwa *et al.* reported that the sensitivity of the spin-torque diode effect exceeds that of semiconductor diode [2]. To realize higher diode sensitivity, an efficient spin-torque is significant. We have reported that the Joule heating induces the efficient spin-torque due to the large and fast magnetic anisotropy change [3, 4]. In this study, we report that giant spin-torque diode sensitivity due to the heat induced anisotropy change.


The samples, buffer layer | IrMn (7.0) | CoFe | Ru | CoFeB | MgO barrier (1.0) | FeB (2.0) | MgO cap (0.5) | metal cap, were deposited on silicon substrates by the magnetron sputtering. The MTJ with the


diameter of 190 nm was fabricated by an electron beam lithography. The spin-torque diode voltage of dc-biased MTJ was measured by the conventional measurement system of spin-torque diode effect [2]. Magnetic field of 50 mT was applied along the azimuthal angle of 11° and in-plane rotation angle from pinned layer magnetization of 135°. Figure 1 shows the microwave power dependence of diode voltage under the dc-bias voltage of approximately 400 mV. Linear power dependence was observed less than $P = 10^{-8}$ W (red dashed line). As a result, we obtained the diode sensitivity of 1.4×10^6 V/W. This value is 300 times larger than the limit of semiconductor diode sensitivity of 3,800 V/W.

[1] A. A. Tulapurkar *et al.*, Nature, **438**, 339 (2005)

- [2] S. Miwa et al., Nat. Mater, 13, 50 (2014)
- [3] M. Goto et al., Nat. Nanotechnol, 14, 40 (2019)

[4] Y. Yamada et al., JSAP Autumn meeting, 18p-PB1-66, (2018)

