シンクロトロン X 線光電子分光法による Al₂O₃/Air/H ダイヤモンド ヘテロ界面のエネルギーバンドアライメントの測定

Energy band alignment of Al₂O₃/Air/H-diamond heterointerface determined by

synchrotron x-ray photoelectron spectroscopy 佐賀大院工¹, 佐賀大学シンクロトロン光応用研究センター² (D)ニロイ チャンドラ サハ¹, 高橋 和敏²,

今村 真幸², ⁰嘉数 誠¹

Dept. of Elec. and Electronic Eng., Saga Univ.¹, Synchrotron Light Application Center, Saga Univ.²

(D)Niloy Chandra Saha¹, Kazutoshi Takahashi², Masaki Imamura², ^OMakoto Kasu¹

E-mail: ^Okasu@cc.saga-u.ac.jp

1.Introduction

Diamond is ultimate semiconductor for power electronics devices. Exposure of NO₂, NO, and SO₂ increase the carrier concentration of H-diamond and influence the band alignment of the Al₂O₃/Hdiamond heterointerface, where valence band offset of 3.9, 3.7 and 3.5 eV are determined, respectively [1-3]. Normally, air exposed H-diamond is used. In this study, energy band alignment of Al₂O₃/Air/Hdiamond heterointerface is determined using x-ray photoelectron spectroscopy (XPS) and compared with NO₂ case.

2. Fabrication and Measurement Process

We used 1- μ m-thick (001) H-diamond homoepitaxial layer grown on HPHT diamond. Hdiamond sample was exposed to air for 2~3 hours. An 8-nm-thick Al₂O₃ layer was deposited as the oxide layer. XPS and XANES spectra were measured at BL-13 line of the Saga Light Source.

3. Experimental Results

Figure 1 shows the core-level spectra of $Al_2O_3/Air/H$ -diamond heterointerfaces, where core level spectra are fitted by the least-square-fitting technique using a Shirley background and a Voigt line shape. XPS measurements were performed with the photon energy of 700 eV to take O 1*s*, C 1*s*, and

Fig. 1 Core-level spectra of (a) O 1s, (b) Al 2p, (c) C 1s at Al₂O₃/Air/H-diamond interface.

Al 2*p* spectra. C 1s and O 2*p* spectra were decomposed into four and two peaks, respectively. No other peak was at the interface. A valence band offset (ΔE_V) of 4.0±0.1 eV, and a conduction band offset (ΔE_C) of 2.8±0.1 eV are determined from the type II band-alignment of the Al₂O₃/Air/H-diamond structure as shown in Fig. 2. Oxygen derived interfacial states is observed in the XANES measurements. Therefore, ΔE_V value and O-interfacial layer are similar to NO₂ case.

4.Conclusion

Energy band alignment is determined using XPS measurements, where valence band offset of type II band alignments of Al₂O₃/air-exposed H-diamond heterointerface is estimated to be 4.0 eV.

Acknowledgements

This work was supported by the JSPS Grants-inaid for Scientific Research (Nos. 24360124, 15H03977).

References

- M. Kubovic and M. Kasu, Jpn. J. Appl. Phys. 49 (2010) 110208.
- [2] K. Takahashi, M. Imamura, K. Hirama, and M. Kasu, Appl. Phys. Lett. 104 (2014) 072101.
- [3] N.C. Saha, K. Takahashi, M. Imamura, and M. Kasu, Phys. Status Solidi A 215 (2018) 1800237.

Fig. 2 Schematic energy band alignment diagram of Al₂O₃/Air/H-diamond heterointerface.