GeO₂/Ge からの GeO 脱離と GeO₂の結晶化の関係

Crystallization of GeO₂ on Ge is really triggered by GeO desorption?

東大院工 ○謝 敏, 西村 知紀, 矢嶋 赳彬, 鳥海 明

Univ. of Tokyo, °Min Xie, Tomonori Nishimura, Takeaki Yajima, and Akira Toriumi

E-mail: minmin@adam.t.u-tokyo.ac.jp

Because of structural similarity with SiO_2 , GeO_2 has been often regarded as the best dielectric film on Ge. It is, however, well-known that GeO_2 is water-solvable and GeO desorption is easily desorbed from GeO_2/Ge stack [1]. GeO_2 crystallization on Ge after GeO desorption has also been experimentally demonstrated [2]. It is intuitively expected that GeO_2 crystallization may be triggered by GeO desorption, but it is not clearly understood whether it is true or not. This paper reports that GeO desorption is NOT directly related to GeO_2 crystallization.

GeO₂/Ge stack with thick SiO₂ cap layer was prepared. **Figure 1** shows the GeO desorption from 270 nm GeO₂/Ge stack in TDS. GeO desorption signal is detected from the stack w/o cap layer, while not observable from w/ cap layer within our experimental accuracy. Then, these samples were inspected by XRD. **Figure 2** shows the crystallization of both stacks, which is like α -quartz type structure.

The results clearly indicate that GeO_2 crystallization is NOT caused by GeO desorption from GeO_2/Ge stack. As we have already discussed [2], the reaction between GeO_2 and Ge is one of the oxidation mechanisms even in UHV, it may progress in capped GeO_2/Ge . Resultantly, oxygen-deficient GeO_2 may be formed, and easily crystallized.

This result strongly suggests that GeO_2/Ge gate stack has intrinsically weak against external perturbation, including electrical stress, as reported experimentally [3]. Apparently good characteristics in the initial properties are not enough but stable network should be carefully considered in terms of the device reliability [4].

This work was partly supported by Kakenhi-Kiban (A).

Ref: [1] S. K. Wang et al., JAP 108, 054104 (2010). [2] X. Wang et al., APL 111, 052101 (2017). [3] X. Tang et al., SSDM 2017. [4] T. Nishimura et al., IEEE JEDS 6, 1212 (2018).

Figure 1 TDS spectra of GeO desorption from 270 nm GeO_2 /Ge w/ and w/o cap layer in UHV at 670° C for 20 min.

Figure 2 XRD of 270 nm GeO₂/Ge w/ and w/o cap layer after anneal in UHV at 670°C for 20 min.