中性子線照射による Tb³⁺ドープ CaO-Al₂O₃-B₂O₃ ガラスの熱蛍光特性 Neutron-induced thermoluminescence of Tb³⁺-doped CaO-Al₂O₃-B₂O₃-based glasses 東北大院工¹, 金沢工大², 奈良先端大³, 量研機構⁴ ^O(B)河村 一朗¹, (M1)川本 弘樹¹, 藤本 裕¹, 越水 正典¹, 岡田 豪², 古場 裕介⁴, 小川原 亮⁴, 柳田 健之³, 浅井 圭介¹ Tohoku Univ.¹, NAIST², KIT³, QST⁴, ^OIchiro Kawamura¹, Hiroki Kawamoto¹, Yutaka Fujimoto¹,

Masanori Koshimizu¹, Go Okada², Yusuke Koba⁴, Ryo Ogawara⁴, Takayuki Yanagida³,

Keisuke Asai¹

E-mail: ichiro.kawamura.tohoku@gmail.com

【緒言】ガラス材料は,化学的耐性,加工性,および光学的品質 に優れる点のみならず,製造コストの低廉さゆえに,幅広い分野 で多用される.その中でも,我々は原子炉施設の¹⁰B含有ホウ酸 塩系ガラスに注目し,中性子検出ガラスへの応用を企図した.本 研究では,天然のホウ素(ⁿB),ホウ素10(¹⁰B),およびホウ素11 (¹¹B)を用いた Tb³⁺添加 CaO-Al₂O₃-B₂O₃ ガラスを作製し,X線, 重粒子線,および中性子線照射後の熱蛍光特性を調べた.

【実験方法】CaCO₃(4N), Al₂O₃(4N), H₃BO₃(4N), および Tb₄O₇(4N) の粉末を量論比で混合後, アルミナ坩堝に充填し, 電気炉内(1100^o C)で加熱・溶融後, ステンレス板に流し込み, 急冷することで, ガ ラス試料を作製した.また, ¹¹B 濃縮 H₃BO₃(¹¹B>99.0%)および ¹⁰B 濃縮 H₃BO₃(¹⁰B>96.0%)含有試料も同様に作製した.こうして得られ たガラスに, X 線, 重粒子線(HIMAC), および中性子線(NASBEE) を照射し, その後の熱蛍光グロー曲線ならびに熱蛍光スペクトルを 測定した.

【結果・考察】図1に、"B および¹⁰B を用いたガラスにおける重粒子線照射後の熱蛍光グロー曲線を示す.双方で約380 K にピークを確認した.また、図2 に重粒子線照射後の熱蛍光スペクトルを示す.双方で同じ波長位置にピークを確認した.これらの結果から、重粒子線照射後の熱蛍光特性は"B ガラスと¹⁰B ガラスで同様であることが分かった.

図 3 に,¹¹B および¹⁰B を用いたガラスにおける中性子線照射後の熱 蛍光グロー曲線を示す(照射して 48 時間経過後に測定した).双方で

414 K と 549 K にピークが確認された.また,発光強度は、¹¹B ガラスよりも ¹⁰B ガラスでの方が 大きかった (414 K で約 8 倍, 549 K で約 26 倍).この結果から,中性子線照射後の熱蛍光特性は, ¹¹B ガラスと ¹⁰B ガラスで大きく異なることが分かった.また,当該ガラスは,低温側での熱蛍光 ピークで,より大きな発光強度を示した.これには,中性子計測材料への応用が期待される.