ミスト CVD 法による α-(In_xAl_{1-x})₂O₃ の混晶薄膜の結晶成長

Epitaxial growth of α -(In_xAl_{1-x})₂O₃ alloy films

by mist chemical vapor deposition

京工繊大^{1,O(D)}田原 大祐¹, 西中 浩之¹, (M2)新田 悠汰¹, 吉本 昌広¹,

Kyoto Inst. Tech. 1, °(D)Daisuke Tahara1, Hiroyuki Nishinaka1,

Yuta Arata¹, and Masahiro Yoshimoto¹.

E-mail: d7822002@edu.kit.ac.jp

近年、GaNやSiCを超えるバンドギャップ(E_e)を有する酸化ガリウム(Ga_2O_3)が注目されている。 その Ga_2O_3 は結晶多形であり、 α , β , γ , δ , ε 相などが知られている。特に、準安定相である α 相はこ れまでに、ミスト CVD 法により n-type ドーパントの電気伝導制御による低オン抵抗の SBD が実 証されている。[1] また、In や Al との混晶についても報告されており、傾斜ドーピング技術を用 いた HEMT への応用が期待されている。[2] Ga₂O₃ 混晶系へテロ接合デバイスの問題点として、Al や In の混晶によって生じる数%オーダーの大きな格子不整合により、ヘテロ界面の制御が難しい ことが挙げられる。そこで、本研究では、コランダム構造 α -(In_xAl_{1-x})₂O₃に注目した。Fig. 1のよ うに、 α -(In_xAl_{1-x})₂O₃ はベガード則によると、組成比が x = 0.3 の場合に α -Ga₂O₃ とほぼ格子整合し、 また、 E_g は α - Ga_2O_3 の 5.3 eV よりも大きいと予測される。この特性から、格子整合系のヘテロ接 合デバイスへの応用が期待できる。しかしながら、α-(In_xAl_{1-x})₂O₃ については、結晶成長の報告が ほとんどない。そこで、本研究では、c面サファイア基板上にミストCVD法を用いてα-In2O/α-Ga2O3 バッファ層を作製し、その上に α -(In_xAl_{1-x})₂O₃薄膜の結晶成長を試みた。

Fig. 2 にサンプル構造とその XRD 20-ω スキャンの結果を示す。バッファ層及び基板に起因す る回折ピークの他に、 α -(In_xAl_{1-x})₂O₃(0006) の回折ピークが観察された。混晶組成比については、 ベガード則から、x=0.26 と算出した。Fig. 3 に逆格子マッピング像を示す。 α -Ga₂O₃の回折スポ ットの近傍に α -(In_{0.26}Al_{0.74})₂O₃ の回折スポットが観察された。このように、ミスト CVD 法による qx, h[110] 3.8 3.9 4 4.1 4.2

Fig.1 Relationships between bandgap Fig.2 XRD 2θ-ω scan profile of energies and a-axis lattice constants of corundum structure oxide semiconductor.

 α -(In_xAl_{1-x})₂O₃ thin film on c-sapphire substrate with α -In₂O₃/ α -Ga₂O₃ buffer layer.

Fig.3 RSM image of α -(In_{0.26}Al_{0.74})₂O₃ thin film on c-sapphire substrate with α -In₂O₃/ α -Ga₂O₃ buffer layer.

[1] Oda et al., Appl. Phys. Express 9, 021101 (2016). [2] S. Fujita et al., J. Cryst. Growth 401, 588-592 (2014).