ミスト CVD 法による α-(In_xAl_{1-x})₂O₃の混晶薄膜の結晶成長

Epitaxial growth of α-(In_xAl_{1-x})₂O₃ alloy films

by mist chemical vapor deposition

京工繊大¹, ^{O(D)}田原 大祐¹, 西中 浩之¹, ^(M2)新田 悠汰¹, 吉本 昌広¹,

Kyoto Inst. Tech.¹, °(D)Daisuke Tahara¹, Hiroyuki Nishinaka¹,

Yuta Arata¹, and Masahiro Yoshimoto¹.

E-mail: d7822002@edu.kit.ac.jp

近年、GaNやSiCを超えるバンドギャップ(E₂)を有する酸化ガリウム(Ga₂O₃)が注目されている。 そのGa₂O₃は結晶多形であり、 α , β , γ , δ , ε 相などが知られている。特に、準安定相である α 相はこ れまでに、ミスト CVD 法により n-type ドーパントの電気伝導制御による低オン抵抗の SBD が実 証されている。^[1] また、In や Al との混晶についても報告されており、傾斜ドーピング技術を用 いた HEMT への応用が期待されている。^[2] Ga₂O₃混晶系へテロ接合デバイスの問題点として、Al や In の混晶によって生じる数%オーダーの大きな格子不整合により、ヘテロ界面の制御が難しい ことが挙げられる。そこで、本研究では、コランダム構造 α -(In_xAl_{1-x})₂O₃に注目した。Fig. 1 のよ うに、 α -(In_xAl_{1-x})₂O₃はベガード則によると、組成比が x = 0.3 の場合に α -Ga₂O₃とほぼ格子整合し、 また、E_gは α -Ga₂O₃ の 5.3 eV よりも大きいと予測される。この特性から、格子整合系のヘテロ接 合デバイスへの応用が期待できる。しかしながら、 α -(In_xAl_{1-x})₂O₃については、結晶成長の報告が ほとんどない。そこで、本研究では、c 面サファイア基板上にミスト CVD 法を用いて α -In₂O/ α -Ga₂O₃ バッファ層を作製し、その上に α -(In_xAl_{1-x})₂O₃ 薄膜の結晶成長を試みた。

Fig. 2 にサンプル構造とその XRD 20- ω スキャンの結果を示す。バッファ層及び基板に起因する回折ピークの他に、 α -(In_xAl_{1-x})₂O₃(0006)の回折ピークが観察された。混晶組成比については、 ベガード則から、x = 0.26と算出した。Fig. 3 に逆格子マッピング像を示す。 α -Ga₂O₃の回折スポットの近傍に α -(In₂Al_{0.74})₂O₃の回折スポットが観察された。このように、ミスト CVD 法による α -(In_xAl_{1-x})₂O₃薄膜成長に成功した。

Fig.1 Relationships between bandgapFig.2 XRD 2θ - ω scan profile of
energies and a-axis lattice constants
of corundum structure oxide α -(In_xAl_{1-x})₂O₃ thin film on
c-sapphire substrate with
 α -In₂O₃/ α -Ga₂O₃ buffer layer.

Fig.3 RSM image of α -(In_{0.26}Al_{0.74})₂O₃ thin film on c-sapphire substrate with α -In₂O₃/ α -Ga₂O₃ buffer layer.

[1] Oda et al., Appl. Phys. Express 9, 021101 (2016). [2] S. Fujita et al., J. Cryst. Growth 401, 588-592 (2014).