多素子化超伝導転移端センサによる光子撮像デバイスの開発

Superconducting Transition Edge Sensors Array

for Development of Photon Imaging Device

産総研¹, 日大院理工² ○(P)今野 俊生¹, 鷹巣 幸子¹, 小林 稜^{1,2}, 服部 香里¹, 井上 修一郎², 福田 大治^{1,2}

AIST¹, Nihon univ.², ^oToshio Konno¹, Sachiko Takasu¹, Ryo Kobayashi^{1,2}, Kaori Hattori¹,

Shuichiro Inoue², Daiji Fukuda^{1,2}

E-mail: t.konno@aist.go.jp

超伝導転移端センサ(Superconducting Transition Edge Sensor: TES)は超伝導薄膜から成り,超伝 導相から常伝導相へ転移する温度域(転移幅)において,単一光子の入射エネルギーを抵抗値の 変化および読出し回路の電圧信号変化として検出することで,非常に高い温度感度,高エネルギ 一分解能,小さい暗計数率および低ノイズをもつカロリメータとして動作する^[1]。

我々は TES をバイオイメージングに応用するべく,可視光域から近赤外波長領域にわたる光子 を検出・分光して高速でスペクトルを得ることを目的としている。我々のグループでは,単一の TES 素子で既に上記波長域の光子を検出・分光してイメージング画像を得ることに成功している ^[2]。本研究では,より高速に単一光子分光イメージ画像を得るために,TES の多素子化の検討を 行っている。受光面内での充填率向上のため TES 素子を近接して配置する場合には,TES 同士の 熱的クロストークが問題となる可能性がある。また,配線などの TES 以外の部分に吸収された光 がノイズを生む原因になると考えられる。そこで,これらの問題を検討するため,大きさ 8 μm×8 μm の TES を 3 種の異なるピッチ 10 μm, 12 μm, 14 μm で配置した 3×3 ピクセルの TES アレイを それぞれ作成した。Fig.1 にピッチ 10 μm の TES アレイおよび周辺配線の顕微鏡画像を示す。本 研究では,特に TES 間の熱クロストークについて詳細な検討を行い,その結果について報告する。

- K. D. Irwin and G. C. Hilton: "Transition-Edge Sensors" Chr. Enss (Ed.): Cryogenic Particle Detection, *Topics Appl. Phys.*, **99**, pp. 63–152 (2005).
- [2] K. Niwa, T. Numata, K. Hattori, and D. Daiji: "Few-photon color imaging using energy-dispersive superconducting transition-edge sensor spectrometry", *Sci. Rep.*, 7, 45660 (2017).
- [謝辞] 本研究の一部は,JST,CREST, JPMJCR17N4 及び AIST 超伝導クリー ンルーム CRAVITY の支援を受けたも のである。

Fig. 1. Optical micrograph of 3×3 pixel array of microcalorimeters. The size of TES is $8 \,\mu$ m×8 μ m. The pitch of TES is 10 μ m. The thickness of TES (Ti/Au) is 20 nm / 10 nm. Nb wiring exhibited line width of 1 μ m and thickness of 100 nm.