Cl₂ガスの電子衝突断面積

Electron collision cross sections of Cl₂ gas 室蘭工大¹, 学振特別研究員² ⁰川口 悟^{1,2}, 高橋 一弘¹, 佐藤 孝紀¹ Muroran I.T.¹, JSPS Research Fellow² [°]S. Kawaguchi^{1,2}, K. Takahashi¹, and K. Satoh¹ E-mail: s2124049@mmm.muroran-it.ac.jp

1. はじめに

電子衝突断面積は、ガス分子と電子の衝突確率を表す 最も基礎的なデータであり、放電プラズマ応用技術の高 性能化のために不可欠である。このため、プラズマプロ セスで用いられる種々の気体材料に関して精確な電子 衝突断面積セットを整備することが望まれている。本研 究では、半導体デバイス製造における Si のプラズマエ ッチングに用いられる Cl2ガスに着目し、このガスの精 確な電子衝突断面積セットを提案することを目的とす る。

Cl2ガスの電子衝突断面積セットに関しては, Tuan and Jeon^[1]の断面積セット, Gregório and Pitchford^[2]の断面積 セットが報告されている。これらの断面積セットは, Cl2 ガス中の実効電離係数,電離係数,電子付着係数の 計算値が実測値^[3]と合うように決定されているが,Cl2 ガス中の電子ドリフト速度と縦方向拡散係数に関して は、計算値と実測値の比較が行なわれていない。近年, Cl2 ガス中の実効電離係数,電子ドリフト速度,縦方向 拡散係数が測定されており19,これらの実験データを使 うことで,電子ドリフト速度と縦方向拡散係数の観点か らも Cl2ガスの電子衝突断面積セットを検討することが 可能となった。ここでは,従来の電子衝突断面積セット を用いて得られる実効電離係数および電子ドリフト速 度の計算値を実測値と比較するとともに, 電子輸送係数 の実測値を再現する計算値が得られる断面積セットを 推定した結果について報告する。

2. 電子衝突断面積および計算方法

Fig. 1 は本研究で推定した Cl₂ ガスの電子衝突断面積 セットを示す。弾性衝突運動量移行断面積 q_m について は,電子エネルギー ε が 1 eV 以下の範囲においては, Gregório and Pitchford^[2]の推定値を使用し, ε >1 eV にお いては,Gote and Ehrhardt^[5]が測定した微分断面積を積 分して得られる q_m を基に形状を決定した。振動励起断 面積 q_{vib} については、3 種類の振動励起[$v = 0 \rightarrow 1, 2, 3$] を考慮しており,Ruf et al.^[6]の理論計算値を使用した。 中性解離断面積 q_{nd} については、Rescigno^[7]が理論計算に よって求めた 5 種類の解離性電子励起(³Пu, ¹Пu, ³Пg, ¹Пg, ³Σu)に関する断面積を 2.34 倍して使用した。非解離性電 子励起断面積 q_{ex} については、Rescigno^[7]が理論計算によ って求めた 2 種類の電子励起(Rydberg ¹Пu, ¹Σu)に関する 断面積を 2.34 倍して使用した。解離性電子付着断面積 q_a については、Gregório and Pitchford^[2]が Ruf et al.^[6]およ び Kurepa^[8]の実測値に基づいて決定した q_a をそのまま 使用した。また、イオン対生成(Cl⁺ + Cl)に関する断面 積 q_{ip} についても、Gregório and Pitchford^[2]が Kurepa^[8]の 実測値に基づいて決定した q_{ip} をそのまま用いた。電離 断面積 q_i については、4 種類の部分断面積(Cl²⁺, Cl⁺ + Cl, Cl²⁺ + Cl, Cl²⁺)で構成されており、Basner and Becker^[9] の実測値の 0.85 倍を通るように決定した。

Monte Carlo 法によって一様な直流電界 E が印加された Cl_2 ガス中の電子の挙動をシミュレートし、サンプリングによって電子の平均到着時間ドリフト速度 W_m ,電離係数 α/N ,電子付着係数 η/N ,実効電離係数 $(\alpha-\eta)/N$,縦方向拡散係数 ND_L を導出する。ここで、N は気体分子数密度であり、3.535×10¹⁶ cm⁻³ (0 °C, 1 Torr)とした。

3. 計算結果

Fig. 2 は Cl₂ ガス中の実効電離係数(α - η)/N および平均 到着時間ドリフト速度 W_m の計算値を実測値^[3,4]と併せ て示す。本研究で推定した断面積セットを用いて得られ た計算値は実測値と良く一致しており,推定した断面積 セットの妥当性が確認できる。Gregório and Pitchford^[2] の断面積セットから得られる(α - η)/N の計算値は $E/N \leq$ 200 Td および $E/N \geq 600$ Td において,それぞれ González-Magaña and Urquijo^[4]の実測値および Božin and Goodyear^[3]の実測値よりも低い値となっている。また, W_m の計算値についてはすべての E/N で実測値よりも低 くなっている。Tuan and Jeon^[1]の断面積セットから得ら れる(α - η)/N の計算値に関しては、300 Td 付近を除いて 実測値と一致していない。また、 W_m の計算値に関して は、100 Td 付近および $E/N \geq 440$ Td において実測値より も高い値となる。

参考文献

- D.A. Tuan and B.-H. Jeon: J. Phys. Soc. Japan 80, 084301 (2011).
- [2] J. Gregório and L.C. Pitchford: Plasma Sources. Sci. Technol. 21, 032002 (2012).
- [3] S. E. Božin and C. C. Goodyear: Brit. J. Appl. Phys. **18**, 49 (1967).
- [4] O. González-Magaña and J. de Urquijo: Plasma Sources. Sci. Technol. 27, 06LT02 (2018).
- [5] M. Gote and H. Ehrhardt: J. Phys. B: At. Mol. Opt. Phys. 28, 3957 (1995).
- [6] M.-W. Ruf et al.: J. Phys. B: At. Mol. Opt. Phys. 37, 41 (2004).
- [7] T.N. Rescigno: Phys. Rev. A 50, 1382 (1994).
- [8] M.V. Kurepa: Chem. Phys. 59, 125 (1981).
- [9] R. Basner and K. Becker: New. J. Phys. 6, 118 (2004).

cross sections for Cl_2 gas.

Fig. 2. Electron transport coefficients in Cl₂ gas.