Synthesis of Si-based Nanosheet Bundles using Metal Chlorides in Solutions

Grad. Sch. Sci. & Technol.¹, Grad. Sch. Integr. Sci. & Technol.², Dept. Eng.³, Res. Inst. Electron.⁴,

Shizuoka Univ., Yamaha Advanced Material Research Gr. ⁵,

Yalei Huang¹, Vimal Saxena², Kaito Tanaka³, Yasuhiro Hayakawa⁴ and Hirokazu Tatsuoka²,

Naohisa Takahashi ⁵

E-mail: huang.yalei.17@shizuoka.ac.jp

Introduction: A nanosheet bundle is one of the important structures for technological applications, such as thermoelectricity, and use in solar cells and Li-ion batteries. In this paper, the nanosheet bundle is defined as an aggregate of long nanosheets that are highly oriented, well-aligned, dense and tied together in higher densities. It has been demonstrated that Si-based nanosheet bundles can be prepared. The synthesis of Si nanosheet bundles by extraction of the Ca atoms from CaSi₂ crystals using Inositol hexakisphosphate (IP6) has been reported [1]. The structural property of the resultant Si-based nanosheet bundles depends on reactant agents with CaSi₂ and solutions, and it is affected by the exfoliation mechanism of the Ca atoms from the CaSi₂ crystals. In this paper, synthesis of Si-based nanosheet bundles from CaSi₂ using selected chloride compounds is reported.

Experiments: Commercially-available CaSi₂ crystal powders were used as the source material. The Si-based nanosheet bundles were formed by Ca-atom extraction from the CaSi₂ crystals by chemical reactions with CuCl₂, TiCl₃, RuCl₃, H₂PtCl₆ and their related compounds in aqueous, dilute HCl acid and propylene carbonate (PC) solutions. The structural properties of these nanostructure bundles were characterized and compared to each other.

Results and Discussion: Figure 1 shows TEM images of Si-based nanosheets bundles synthesized with TiCl₃, RuCl₃ and H₂PtCl₆ in aqueous solution and CuCl₂ in PC solution. For the case of TiCl₃, the formation of the bundle structures is observed by the exfoliation of the sheets each other. In addition, stripped pattern along the sheet surface is also observed.

For RuCl₃, and H₂PtCl₆, metallic precipitation is additionally observed. Metallic precipitation with large size distribution is also observed for CuCl₂ in PC solution. The atomic scale structural modifications from CaSi₂ crystals will be also presented.

Acknowledgements

A part of this work was supported by KAKENHI Grant Number 17K06347 and the Cooperative Research Project Program of Research Institute of Electronics, Shizuoka University.

High school student of Future Scientists' School in Shizuoka University, Global Science Campus supported by Japan Science and Technology Agency.

References

[1] X. Meng, et al., Jpn J.Appl.Phys. 56(5S1), 05DE02 (2017).

Fig. 1 TEM images of the nanosheet bundles synthesized by the chemical reactions.