三段階成長法による BaSi₂ 光吸収層の高品位エピタキシャル成長 Molecular beam epitaxy of high-quality BaSi₂ light absorbers using three-step growth method

筑波大¹, ⁰山下 雄大¹, 佐藤 拓磨¹, 都甲 薫¹, 末益 祟¹

Univ. Tsukuba¹, °Yudai Yamashita¹, Takuma Sato¹, Kaoru Toko¹, Takashi Suemasu¹

E-mail: bk201311068@s.bk.tsukuba.ac.jp

【背景・目的】

新規薄膜太陽電池材料として BaSi₂ に注目している。BaSi₂ は地殻中に豊富に存在する元素で構成される半導体 でありながら、光吸収係数(3×10⁴ cm⁻¹@1.5 eV)と少数キャリア拡散長(10 μm)がどちらも大きいユニークな材料であ り、禁制帯幅(1.3 eV)も太陽電池に適している¹⁾。現在、25%を超える変換効率が実現可能²⁾な BaSi₂-pn ホモ接合太 陽電池の作製を目指しており、undoped BaSi₂ は上記構造の光吸収層として期待されている。先行研究において過 渡容量分光法(DLTS)と陽電子消滅法(PAS)による欠陥評価を行い、Si 空孔(V_{Si})が BaSi₂ 中で正孔トラップとして働 き、表面付近に多く存在することが明らかとなった^{3,4)}。さらに、検出した V_{Si}を低減させる目的で成長時の基板温度高 温化を検討し、分光感度の増加に成功した⁵⁾。本研究では、Si-rich 条件下での Si 原子拡散メカニズムを明らかにし、 Si 拡散を利用した新たな成膜方法を検討した。

【実験】

本研究では、従来の二段階成長を拡張した三段階成長を検 討した。Fig. 1 に作製方法の概略図を示す。まず、加熱した Czn-Si(111) 基板 ($\rho < 0.01 \Omega$ ·cm) 上に Ba のみを堆積し反応させる RDE 法で BaSi₂ テンプレート層を作製した。次に、Ba と Si を同 時供給する MBE 法で、Ba-rich BaSi₂(R_{Ba}/R_{Si} = 4.0)を 100 nm エ ピタキシャル成長した。最後に MBE 法で Si-rich BaSi₂(R_{Ba}/R_{Si} = 1.2)を 400 nm 製膜した。3 層目から吐き出された過剰 Si が 2 層 目の Si 空孔を埋めることで全体が Si-rich となる。表面には *insitu* で BaSi₂ のパッシベーション膜である 3 nm の a-Si を堆積し た。さらに、スパッタ法を用いて表面に直径 1 mm、厚さ 80 nm の ITO 電極、裏面に Al 電極を作製した。本研究では上記手法で 作製した試料を、二段階成長で製膜した Ba-rich BaSi₂(R_{Ba}/R_{Si} = 4)、Si-rich BaSi₂(R_{Ba}/R_{Si} = 1.2)と比較した。結晶性評価には RHEED と θ -2 θ XRD を用い、分光感度特性は直径 1 mm のマ スクを用いて測定した。

【結果・考察】

Fig. 2(a) に θ -2 θ XRD パターンと RHEED 像を示す。3 段階成 長による試料($R_{Ba}/R_{Si} = 1.2+4.0$)は大半を Si-rich 条件で作製し たにもかかわらず、Ba-rich 時に匹敵する鮮明なストリークパター ンと a 軸配向 BaSi₂ 由来の XRD ピーク強度が得られた。Si-rich 条件下では、BaSi₂ 600 回折強度の FWHM が大きく、a 軸の配 向性が悪いのが特徴であった(Fig.3(a))が、三段階成長により 格段に配向性が改善された。さらに、分光感度も Si-rich BaSi₂ ($R_{Ba}/R_{Si} = 1.2$)により得られていた過去最大の値を 4 - 5 倍更新 する値を達成した。以上より、配向性と低 V_{Si} 密度を両立した BaSi₂ 光吸収層の実現に成功したといえる。

【参考文献】

- 1) T. Suemasu, Jpn. J. Appl. Phys. 54, 07JA01 (2015).
- 2) T. Suemasu and N. Usami, J. Phys. D: Appl. Phys. 50, 023001 (2017).
- 3) Y. Yamashita et al., Jpn. J. Appl. Phys. 57, 075801 (2018).

Fig. 1 Schematic images of BaSi₂ 3-step growth method.

Fig. 2 ϑ -2 ϑ XRD patterns and RHEED images for BaSi₂ grown with defferent R_{Ba}/R_{Si} ratios.

Fig. 3 (a) Dependence of FWHM of XRD BaSi₂ 600 intensity on R_{Ba}/R_{Si} . (b) Photoresponce spectra of BaSi₂ grown defferent R_{Ba}/R_{Si} ratios under a bias voltage of -0.1 V.

- 4) Y. Yamashita et al., JSAP Spring meeting 19a-F202-7 (2018).
- 5) Y. Yamashita et al., JSAP Autumn meeting 19p-436-15 (2018).