多光子イメージング用カリウム 43 の製造技術開発

Development of Production Technology of Potassium-43 for Multi-Photon Imaging 理研¹,東大²,東北大³,国際医療福祉大⁴,量研機構⁵

[•]羽場 宏光¹, 小森 有希子¹, 横北 卓也¹, 森 大輝¹, 高橋 浩之², 島添 健次², 鎌田 圭³, 百瀬 敏光⁴, 高橋 美和子⁵

RIKEN¹, Univ. Tokyo², Tohoku Univ.³, Int. Univ. Health Welfare ⁴, QST⁵

[°]Hiromitsu Haba¹, Yukiko Komori¹, Takuya Yokokita¹, Daiki Mori¹, Hiroyuki Takahashi²,

Kenji Shimazoe², Kei Kamada³, Toshimitsu Momose⁴, Miwako Takahashi⁵

E-mail: haba@riken.jp

【研究の背景】我々の研究グループでは,科研費基盤研究(S)事業(課題番号:17H06159,研究 代表者:高橋浩之)において,時間相関からガンマ線入射方位を特定する反跳電子追跡型ガンマ カメラを用いた多光子ガンマ線時間/空間相関型断層撮像法の確立を目指している.本撮像法は, 複数光子間の相関を用いて,体内放射能濃度を高分解能,高感度かつ高 S/N 比で決定できる画期 的な手法である.本研究では,理研 AVF サイクロトロンを用いて,カリウム 43 (⁴³K,半減期 $T_{1/2}$ = 22.3 h),スカンジウム 48 (⁴⁸Sc, 43.67 h),クロム 48 (⁴⁸Cr, $T_{1/2}$ = 21.56 h),クロム 49 (⁴⁹Cr, $T_{1/2}$ = 42.3 min), 亜鉛 71m (^{71m}Zn, $T_{1/2}$ = 22.3 h) などの多光子放出ラジオアイソトープの製造技

術開発を進めている. 今回, ^{nat}Ca(d,X)⁴³K 反応 (nat: 天然同位体組成) による ⁴³K の製造を試 みたので報告する.

【実験】AVF サイクロトロンで 24 MeV に加速 した d ビーム (1 μA) を直径 10 mm の円盤状に 加圧成型した酸化カルシウム標的(純度 99.995%, 厚さ 210 mg/cm²) に 66 分間照射した. 照射後, 標的を塩酸に溶解後, Ca をシュウ酸沈殿として ろ別し, 陽イオン交換法で⁴³K を精製した.

【結果と考察】図1に,化学分離の前(図1a) と後(図1b)に取得したガンマ線スペクトルを 示す.非破壊照射標的には,多数の副反応生成 物のガンマ線が観測され,⁴³Kのガンマ線を明確 に観測できない(図1a).しかし,精製後は,反 跳電子追跡型ガンマカメラの開発に利用できる ⁴³Kのガンマ線(372.8,396.9,593.4,617.5 keV) を明確に確認できた.今後,⁴³Kを用いてガンマ カメラの開発を進めて行く予定である.

図 1.⁴³K のガンマ線スペクトル.(a) 化学精 製前(照射終了後 1.3 時間).(b) 化学精製 後(照射終了後 8.6 時間).