Vertical Triple-Ion-Implanted β -Ga₂O₃ MOSFETs with Nitrogen-Doped Current Blocker

National Institute of Information and Communications Technology¹,

Tokyo University of Agriculture and Technology², Tamura Corporation³

^oMan Hoi Wong¹, Ken Goto^{2,3}, Hisashi Murakami², Yoshinao Kumagai², Masataka Higashiwaki¹

E-mail: mhwong@nict.go.jp

Vertical power switching devices are desirable for high-voltage applications since they allow for superior field termination, high current drives, and simplified thermal management. β -Ga₂O₃ (Ga₂O₃) is amenable to doping with both shallow donors (Si) [1] and deep acceptors (Mg, N) [2] by ion implantation with efficient dopant activation at a low thermal budget, thereby enabling device fabrication by a highly manufacturable all-ion-implanted process resembling that for SiC MOSFETs. In this work, a current aperture vertical Ga₂O₃ MOSFET is demonstrated by integrating N-ion (N^{++}) and Si-ion (Si^{+}) implantation doping [3].

The depletion-mode vertical Ga₂O₃ MOSFET consisted of a 5- μ m-thick Si-doped (2.5×10¹⁶ cm⁻³) *n*⁻-Ga₂O₃ drift layer grown by halide vapor phase epitaxy (HVPE) [4] on an n^+ -Ga₂O₃ (001) substrate (Fig. 1). A buried current blocking layer (CBL) for source–drain isolation was formed by N^{++} implantation doping. To recover implantation damage and activate N as a deep acceptor, thermal annealing was performed at 1100°C for 30 min in N₂ [2]. Subsequent Si⁺ implantations defined the electron channel and n^{++} source contacts that were activated at 950°C and 800°C, respectively, for 30 min in N₂. A 50-nm-thick Al₂O₃ gate dielectric was then grown by plasma-assisted atomic layer deposition. Ti/Au and Ti/Pt/Au were used for the ohmic and gate electrodes, respectively. Device fabrication was completed with the deposition of Ti/Au source probing pads on the Al₂O₃ for low pad leakage. The MOSFETs had an aperture opening of 20 μ m and a gate length of 2.5 μ m.

The vertical MOSFETs delivered a drain current density (I_D) of 0.42 kA/cm² (normalized to the Si channel implant area) and a corresponding specific on-resistance of 31.5 m $\Omega \cdot \text{cm}^2$ at a gate voltage (V_G) of +5 V (Fig. 2). A high $I_{\rm D}$ on/off ratio of over 10⁸ was achieved, where the off-state $I_{\rm D}$ was dominated by gate leakage. The three-terminal off-state breakdown voltage of these devices was limited by Al₂O₃ breakdown to less than 30 V owing to the high Si doping over the aperture. Under 5- μ s gate-pulsed conditions at a quiescent gate bias (V_{GO}) of -40 V and a constant drain bias (V_D) of 20 V, the MOSFETs demonstrated potential for high speed switching operation by virtue of a large $I_{\rm D}$ when pulsed on, yet a small positive threshold voltage shift attributable to bulk or interface electron trapping under the gate was observed (Fig. 3). With improved dielectric quality and optimized doping schemes, this work promises a disruptive impact on Ga₂O₃-based power electronics.

This work was partially supported by Council for Science, Technology and Innovation (CSTI), Crossministerial Strategic Innovation Promotion Program (SIP), "Next-generation power electronics" (funding agency: NEDO).

[1] K. Sasaki et al., Appl. Phys. Express 6, 086502 (2013). [2] M. H. Wong et al., Appl. Phys. Lett. 113, 102103 (2018). [3] M. H. Wong et al., IEEE Electron Device Lett. (2019), in press, doi: 10.1109/LED.2018.2884542. [4] K. Goto et al., Thin Solid Films 666, 182 (2018).

Fig. 1. Cross-sectional schematic of the vertical Ga₂O₃ Fig. 2. DC output characteristics MOSFET. The aperture and source widths were 200 µm.

of the vertical MOSFET.

