Electrical Properties of In₂O₃ and ITO Thin Films Prepared by Solution Process using In(acac)₃ Precursor

School of Materials Science, Japan Adv. Ins. Sci. & Tech. (JAIST) ^OPuneet Jain, Ken-ichi Haga, Eisuke Tokumitsu E-mail: s1620011@jaist.ac.jp

Introduction: Indium tin oxide (ITO) is widely used transparent conductive oxide. It was demonstrated that fine patterns can be fabricated for indium oxide (In₂O₃) and ITO by direct nanoimprint process using indium acetylacetonate $(In(acac)_3)$ based source solution [1]. In this work, electrical properties of solution processed In₂O₃ and ITO films were studied using In(acac)₃ based source solutions. Sn precursors used in this work were tin acetylacetonate $(Sn(acac)_2)$ and tin chloride (SnCl₂) while propionic acid (PrA) was used as a solvent. To the best of our knowledge, no other research group has used these precursors. A few researchers [2] have used InCl₃ and SnCl₂ to from ITO films. In our case, In(acac)3 with SnCl₂ or Sn(acac)₂ were used as precursors.

Experimental Procedure: First, source solutions were prepared by dissolving In(acac)₃ in PrA for In₂O₃, In(acac)₃ and SnCl₂ or Sn(acac)₂ in PrA for ITO film formation. Then, they were filtered and spin-coated on SiO₂(200nm)/Si substrate, after which the sample was heated on a hot-plate in air, which resulted in gel films. Next, the gel films were annealed in rapid thermal annealing (RTA) in O_2 by varying the annealing time at 600°C in O₂. Electrical properties (mobility and carrier concentration) were studied by Hall measurements using van der Pauw configuration.

Results and Discussion: Figure 1 shows the Hall mobility of In₂O₃ and ITO films prepared with SnCl₂ and Sn(acac)₂ precursors. Relatively large mobility of 45 cm²/Vs was obtained for In_2O_3 and the mobility decreases with Sn content, which is similar to the previous publications. It is interesting to note that the Hall mobility of ITO via SnCl₂ is lower than that of Sn(acac)₂, which may be due to the incorporation of Cl in the films and the details are now under study. Figure 2 shows the resistivity of ITO films. A resistivity of $2.5 \times 10^{-3} \Omega$.cm was obtained when the Sn content is 1%, which is comparable or larger than that of the films prepared by spay and dip coating methods [2, 3]. This is due to relatively small carrier concentration (1x10²⁰ cm⁻³) of the films

fabricated in this work, because we employed O₂ annealing.

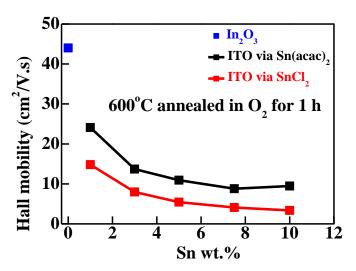


Fig. 1: Hall mobility dependence on Sn wt.% for ITO films.

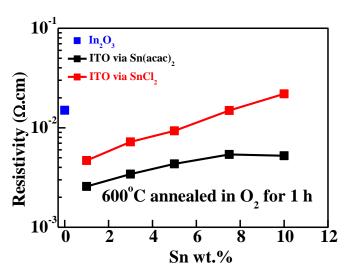


Fig. 2: Resistivity of ITO films.

References:

- 1. T. Kaneda et al., J. Mater. Chem. C 2 (2014)
- 40
- 2. Y. Sawada et al., MRS-J 34 (2009) 225.
- 3. Y. Seki et al., MRS-J, 34 (2009) 253.