Imaging in－plane 90° magnetization switching in（Ga，Mn）As

Bassam Al－Qadi ${ }^{1}$ ，Yuya Sakatoku ${ }^{2}$ ，Nozomi Nishizawa ${ }^{2}$ ，and Hiro Munekata ${ }^{2}$
${ }^{l}$ Department of Electrical Engineering，College of Engineering and Technology，Palestine Technical University－Kadoorie，P．O．Box：7，Yafa Street，Tulkarm，Palestine
${ }^{2}$ Laboratory for Future Interdisciplinary Research Science and Technology，Tokyo Institute of Technology， 4259－J3－15 Nagatsuta，Midori－ku，Yokohama 226－8503，Japan
E－mail：b．qaddi＠ptuk．edu．ps

The in－plane 90 －degree $\left(90^{\circ}\right)$ magnetization switching in a（Ga，Mn）As epitaxial layer $\left(x=0.02, T_{\mathrm{C}} \approx 50\right.$ K ）is studied using a home－made magneto－optical（MO）microscope．A small contrast between two different 90° domains caused by magnetic birefringence（MB）［1］is enhanced by image processing．Two consecutive 90° switchings are captured at temperature regimes below and above the half－value of the Curie temperature，namely，at 10 K and 30 K ．The dynamics are not the same for the first and the second switching，reflecting the influence of the $\langle 110\rangle$ uniaxial anisotropy and spin－dependent pinning sites［2］．At 10 K ，the first switching that passes via the relatively－easy uniaxial（REU）axis（the［1－10］axis）is dominated by smooth 90° domain wall（DW）motion（Fig．1，left），whereas the second switching that passes via the relatively－hard uniaxial（RHU）axis（the［110］axis）occurs through nucleation and coalescence of 90° domains together with the DW motion（Fig．1，middle）．Similarly，at 30 K ，the first switching is initiated by nucleations and their rapid expansion，whereas the second switching is dominated by relatively slow DW motion（data not shown）．The extracted DW velocity is analyzed by employing a thermally－activated depinning and flow models（Fig．1，right）［3］．The values of derived parameters，namely，the activation volume and DW mobility are found to be $(28 \mathrm{~nm})^{3}$ and $0.35 \mathrm{~nm} \mathrm{~s}^{-1}$ Oe at 10 K ，respectively［4］．

Fig．1：Successive MO domain images acquired at 10 K for the first 90° magnetization switching（left graph）and the second 90° magnetization switching（middle graph）．The lag time between the successive images is 0.2 s ．Right graph is the DW velocity as a function of magnetic field obtained for the first 90° switching at 10 K ．In the linear plot，solid lines represent fits to the high－field velocities．In the semilogarithmic plot（insets），solid lines are linear fits to the low－field region．
［1］B．Al－Qadi，N．Nishizawa，K．Nishibayashi，M．Kaneko，and H．Munekata，Appl．Phys．Lett．100， 222410 （2012）．
［2］J．Zemen，J．Kučera，K．Olejník，and T．Jungwirth，Phys．Rev．B 80， 155203 （2009）．
［3］P．J．Metaxas，J．P．Jamet，A．Mougin，M．Cormier，J．Ferré，V．Baltz，B．Rodmacq，B．Dieny，and R．L．Stamps，Phys． Rev．Lett．99， 217208 （2007）．
［4］B．Al－Qadi，Y．Sakatoku，N．Nishizawa，and H．Munekata，J．Appl．Phys．124， 063901 （2018）．

