コングルエントLiNb03の高周波電気光学係数の波長分散

Dispersion of high-frequency electro-optic coefficients r_{22}^{S} , r_{13}^{S} , r_{33}^{S} and

 r_{51}^{S} in congruent lithium niobate

浜松ホトニクス株式会社 中央研究所

滝澤國治

Hamamatsu Photonics K.K., Central Research Laboratory Kuniharu Takizawa

E-mail: kuniharu.takizawa@crl.hpk.co.jp

1. **<u>まえがき</u>** LiNb0₃ (LN) の 1 次電気光学 (EO) 効果を利用した様々な光デバイスが実用化されているが, その高周波 EO 係数の波長分散はまだ知られていない. そこで, LN の低周波 EO 効果から逆圧電効果と光弾性効果を差し引くこと により, 高周波 EO 係数の波長分散を求めた. 表 1 r_{ii}^{E} (pm/V)

2. <u>高周波 E0 係数 r_{ij}^sの導出</u>

加工面の法線が結晶 *i*, *j*, *k*軸のいずれかと平行である LN 横型光変調器の低周波の動的位相 *△* θ は、印加電界を*E*_{*j*}, 結晶長を *L*, 光の波長を λ とすると、次式で与えられる. $\Delta \theta = \pi n_i^3 r_{ij}^E LE_j / \lambda$ (1), $r_{ij}^E = r_{ij}^T + 2d_{jk} / n_i^2$ (2), $r_{ij}^T = r_{ij}^S + \sum_{h=1}^6 p_{ih} d_{jh}$ (3).

ここで n_i は結晶の *i* 軸方向に振動する光が感じる屈折率, r_{ij}^E は実効的 E0 係数[1], r_{ij}^T は低 周波の E0 係数, r_{ij}^S は高周波の E0 係数, d_{jk} は結晶の $k(\neq i, j)$ 軸方向の光路長変化に関わる圧電 係数, p_{ih} は光弾性係数である.

著者らは r_{22}^{T} , r_{13}^{E} , r_{33}^{E} , d_{22} , d_{31} を計測し, これらの係数と r_{22}^{E} , r_{13}^{T} , r_{33}^{T} の絶対値と相対 符号を決定した[2, 3, 4]. これらは高精度で計測できたが, d_{33} を安定に測定することは困難だっ た[5]. 因みに文献[6]の値もばらついている (d_{33} =+6. 0[~]+18.8 pC/N). そこで式 (3) を用いて, 間 接的に d_{33} を求めた. まず r_{22}^{T} と文献[6]の光弾性係数 p_{ih} を用いて, 両者の相対的符号を定めた. 次に r_{13}^{T} , d_{31} と文献[6]の r_{13}^{S} , p_{ih} より d_{33} =+6. 60 pC/N を得た.

つぎに結晶の x_2 軸, x_3 軸を x_1 軸の周りに角度 ξ =41.53~74.0°回転させた6種類の光変調器を作製し、これまで得た r_{22} ^T, r_{13} ^T, r_{33} ^T, d_{22} , d_{31} , d_{33} を用いて, r_{51} ^T

および d_{15} の絶対値と絶対符号を求めた[7]. 全係数の相対符号は明らか だから, r_{51}^{T} , d_{15} の結果から全係数の測定値は,絶対符号をもつ. これら の値と文献[6]の p_{ih} から,高周波 E0 係数を導出した(表 4).表 1 ~ 4に示 す計測値は全て λ = 632.8nm の値である.最後に文献[2,3,7]の r_{22}^{T} , r_{13}^{E} , r_{33}^{E} , r_{51}^{T} の波長分散データ,表3の d_{ji} , 文献[6]の p_{ih} より, r_{22}^{S} , r_{13}^{S} , r_{33}^{S} , r_{51}^{S} の波長分散を求めた(図 1).

<u>文献</u>

- K. Takizawa and M. Okada: J. Opt. Soc. Am., 72 (1982) 809.
- (2) 杉本,米倉,金,滝沢:第54回 応物春季 講演会予稿集,(2007) 29a-ZS-3.
- (3) K. Yonekura, L. Jin and K. Takizawa: Opt. Rev., 14 (2007) 194
- (4) K. Yonekura, L. Jin and K. Takizawa: Jpn. J. Appl. Phys., 47 (2008) 5503.
- (5) 松本,星野,吉田,滝沢:第 56 回応物理春季講演 会予稿集(2009)31p-B-8.
- (6) K. Hellwege, Editor, *Landolt Börnstein*, New Series, III/11 (Springer-Verlag1979) 390, 520.
- (7) 滝沢, 伊林: Opt. Photo. Jpn 予稿集, (2009) 24aE5, 24aE6.

¥	2	r T	(nm/N)
★	-Z	r::	(nm/v)

+14.6

+9.71

+30.9

+47.3

 r_{22}^{E}

 r_{13}^E

 r_{33}^{E}

 r_{51}^{E}

∧ = - y	(p
r_{22}^{T}	+6.54
r_{13}^{T}	+9.43
r_{33}^{T}	+30.6
r_{51}^{T}	+32.1

表 4 r_{ii}^{S} (pm/V)

		1
d_{22}	+21.1	
d_{31}	-0.74	
1	16.60	
a_{33}	+0.00	
d_{15}	+76.4	

表 3 *d_{ii}* (pC/N)

r_{22}^{s}	+3.26
r_{13}^{S}	+8.6
r_{33}^{S}	+30.3
r_{51}^{S}	+27.3