SEM/熱画像カメラを用いた熱伝導率測定のための電子線照射加熱

Electron-beam heating for thermal conductivity evaluation by SEM/thermography system

静岡大 1 , SRM科技大 2	\bigcirc 池田 浩也 1 , P. バスカラン 1,2 , 太田 裕也 1 , 七尾 亮 1 , 秋葉 孔 1
早稲田大 3 , 産総研 4	五井 悠仁 1 ,富田 基裕 3 ,松川 貴 4 ,松木 武雄 3,4 ,渡邉 孝信 3
	鈴木 悠平 1 , K. D. ニーシャ 2 ,猪川 洋 1 ,下村 勝 1 ,村上 健司 1
Shizuoka Univ. 1 , SRMIST 2	$^{igodol }$ H. Ikeda 1 , P. Baskaran 1,2 , Y. Ota 1 , R. Nanao 1 , K. Akiba 1
Waseda Univ. 3 , AIST 4	Y. Goi 1 , M. Tomita 3 , T. Matsukawa 4 , T. Matsuki 3,4 , T. Watanabe 3
	Y. Suzuki 1 , K.D. Nisha 2 , H. Inokawa 1 , M. Shimomura 1 , K. Murakami 1

E-mail: ikeda.hiroya@shizuoka.ac.jp

【背景】熱電変換デバイスの高性能化を実現するために、ナノ構造の導入が注目されている.しかしながら、ナノスケールという小ささのために、ナノ構造の熱電変換特性を評価することは難しい.

我々は、マイクロ・ナノスケール材料の熱伝導率 を測定するために、走査電子顕微鏡(SEM)と赤 外熱画像カメラを用いた新しい測定技術を構築し ている [1]. この手法は AC カロリメトリ法 [2] を 基礎としており、試料加熱位置を SEM で確認する とともにその電子線にて周期加熱を行い、試料内 の温度分布変化を熱画像カメラにて一括して測定 する. 従って、試料と非接触で測定できる上に、測 定に要する時間も短縮できるメリットを持つ.本 研究では、この第一段階として、電子線照射による 試料加熱の実験を行った.

【実験】図1は,構築中の熱伝導率測定装置の写真 である.基本となる電子顕微鏡システム(ヴェール ミー HCS-10)のチャンバを改造して,熱画像カメ ラ(サーマルヴュー XMCR32-SA0350-1xHT)を 取り付けてある.本実験では試料として,750µm 周期でパッド状にパターニングされた Pt(膜厚: 100nm)/Ti(膜厚:20nm)積層膜を用いた.

実験方法は次の通りである.熱画像カメラによる試料の温度分布測定を開始して10秒経過後に, 1つの Pt/Ti パッドに電子線照射を行い,温度測 定終了まで同じ場所を照射し続けた.この時の入 射電子線の加速電圧は7kVであり,事前にファラ デーカップを用いて測定した入射電流は10⁻⁷A以 上であった.

【実験結果】図2は,電子線を照射したパッドとその 隣のパッド(電子線照射されたパッドから750µm 離れている)の温度の時間変化である.このグラ フから,電子線照射を開始すると同時にパッドの 温度が上昇し始めることがわかる.さらに,照射 しているパッドの温度上昇が,隣のパッドよりも 急激に起こる結果が得られた.これらの結果から,

Fig. 1 SEM/thermography system.

Fig. 2 Time evolution of temperature observed at the electron irradiated pad and the neighbor pad.

電子線照射により試料を局所加熱できることが確 認できた.

本研究を遂行するに当たり,技術的なサポートを いただいた橋本修一郎博士に感謝いたします.本 研究は,JST-CREST (JPMJCR15Q7)の助成に より遂行されました.

- 1. H. Ikeda, et al., Makara J. Technol. 19 (2015) 11.
- 2. I. Hatta, Rev. Sci. Instrum. 56 (1985) 1643.