方向感度シンチレータ開発に向けた Mg 置換 ZnWO4 結晶の育成

Crystal growth of Mg-substituted ZnWO4 crystals

for the development of direction-sensitive scintillators

東北大金研¹,東北大 NICHe²,山形大³,東大⁴ [○]山路晃広¹,黒澤俊介^{2,3},堀合毅彦¹, 関谷洋之⁴,ピーダーセン珠杏⁴,吉野将生¹,大橋雄二²,横田有為²,鎌田圭²,吉川彰^{1,2} Tohoku Univ. IMR¹, Tohoku Univ. NICHe², Yamagata Univ.³, Tokyo Univ.⁴

°Akihiro Yamaji¹, Shunsuke Kurosawa^{2,3}, Takahiko Horiai¹, Hiroyuki Sekiya⁴, Juan Pedersen⁴,

Masao Yoshino¹, Ohashi Yuji², Yuui Yokota², Kei Kamada², Akira Yoshikawa^{1,2}

E-mail: yamaji-a@imr.tohoku.ac.jp

宇宙の約27%を占めるとされる暗黒物質の直接探索実験が世界中で行われている。暗黒物質は白鳥座方向から来ると考えられており、方向感度検出器の開発が進められている。イタリアのDAMAグループは、固体シンチレータ ZnWO4 結晶が放射線の入射面(結晶方位)によって発光量が異なることを示した[1]。ただし、そのメカニズムなどは明らかにされていない。そこで、われわれは Zn のサイトの一部を Mg に一部置換して育成し、結晶格子を変化させたときの、発光量と入射する方位面の関連性について調べた。

 $Z_{n_{1-x}}Mg_xWO_4$ 結晶(x=0.05,0.10,0.50)をチョクラルスキー法により育成した。純度 99.99%の Z_{nO} 、MgO、 WO_3 粉末を出発原料として用い、ルツボとして白金を用いた。育成雰囲気としては アルゴンと酸素が 1:1 の比の混合ガスとした。種結晶は c 軸方位の Z_{nWO_4} を使用し、引き上げ速度 0.50 mm/h、回転速度 10 rpm の条件で結晶育成を行った。

育成した結晶の一例として $Zn_{0.50}Mg_{0.50}WO_4$ 結晶を図1に示す。クラックフリーの透明な結晶を得ることができた。育成結晶は、粉末 X 線回折法により、Mg 添加量を増やすことで $ZnWO_4$ より a 軸及びb 軸の格子定数の減少が見えた。一方でc 軸の格子定数の変化はほとんど見られなかった。発光量評価を含め詳細な結果については本講演にて報告する。

図 1 Cz 法により育成した $Z_{n_{0.50}}Mg_{0.50}WO_4$ 結晶(左)と作製した 10 mm 角の評価用サンプル(右)。

参考文献

[1] F. Cappella et al., Eur. Phys. J. C 73 (2013) 2276.