GaN 自立基板上 pn ダイオードの逆方向リーク電流と ナノパイプ壁面に存在する不純物との関係

Relationship between reverse leakage current of p-n diodes on GaN free-standing substrate and impurities present on nanopipe surface

名大院工¹,名大未来材料・システム研究所²,物質・材料研究機構³,名大赤崎記念研究センター⁴,名大 VBL⁵ ^O宇佐美 茂佳¹,田中 敦之^{2,3},福島 颯太¹,安藤 悠人¹,出来 真斗²,新田 州吾²,本田 善央²,天野 浩^{2,3,4,5} Dept. of Electronics, Nagoya Univ.¹, Nagoya Univ. IMaSS², NIMS³, Nagoya Univ. ARC⁴, Nagoya Univ. VBL⁵ ^oS. Usami¹, A. Tanaka^{2,3}, H. Fukushima¹, Y. Ando¹, M. Deki², S. Nitta², Y. Honda², and H. Amano^{2,3,4,5}

E-mail: s_usami@nuee.nagoya-u.ac.jp

背景 GaN 縦型 pn ダイオード (PND) において自立基板中の螺旋転位が MOVPE によるホモエピタキ シャル成長中にナノパイプに変換し,そのナノパイプによってリークが引き起こされることを前回の 応物で報告した[1].しかし,ナノパイプ全てがリークを発生するわけではなく,リークを生じないナ ノパイプも観察されたため,ナノパイプをリーク源とする別の要因の存在が示唆された.ナノパイプ 壁面に酸素が存在することが Hawkridge らより報告されており[2],酸素や他の不純物終端によるリー クパス形成の有無がナノパイプをリーク源とするかを決定すると考察できる.そこで本発表では,漏 れるナノパイプ,漏れないナノパイプ壁面の不純物を STEM の Energy Dispersive X-ray Spectroscopy (STEM-EDS) 分析により評価し,ナノパイプとリーク,壁面不純物の関係を明らかにする.

実験方法 転位密度 10⁶ cm⁻² 台の GaN 基板上に 500 hPa の減圧条件および 1000 hPa の大気圧条件で PND 構造を成膜し,デバイスプロセスを施して縦型 PND を作製した.エミッション顕微鏡によりリークス ポットを観察し, pGaN 除去後に形成したエッチピットと位置関係を確認することで,漏れるナノパイ プ,漏れないナノパイプ位置を確認した.ナノパイプはエッチピットで Fig.1 に示すようなエッチピッ トを生じるため容易に位置特定可能である.これら漏れる・漏れないナノパイプを FIB により加工し 壁面の不純物を STEM-EDS により分析した.

結果と考察 500 hPa 成長 PND で見られた漏れないナノパイプと 1000 hPa 成長で見られた漏れるナノ パイプを観察対象とし,壁面部分及びリファレンスとして結晶内部を STEM-EDS により点分析した. その EDS スペクトルを Fig. 2 に示す. Ti, Cu, Pt ピークはそれぞれサンプルステージ,銅メッシュ, 保護膜起因のピークである. C は電子線照射によるコンタミネーションと考えられる. リファレンス と壁面のスペクトルを比較すると壁面には O および Si のピークが観察された.酸素の存在は過去の報 告と一致しているが, Si に関しては壁面を終端しているのか,コンタミネーションによるものか検証 中である.また漏れる・漏れないナノパイプを比較するとどちらも O, Si が存在しており壁面の不純

物元素に明確な差は確認されない.ゆえに,ナ ノパイプをリーク源とする要因として単純に不 純物の有無ではなく,その終端構造も含めた検 討が必要と考えられる.また,不純物以外の要 因(例えばナノパイプのバーガースベクトル) の調査が必要であることが示された.

謝辞 本研究の一部は文部科学省「省エネルギー社 会の実現に資する次世代半導体研究開発」の委託を 受けたものである.

参考文献

[1] 宇佐美他,第79
回秋応物 20p-331-2.
[2] M. E. Hawkridge *et al.*, Appl. Phys. Lett.
87 (2005) 221903.

Fig. 1 SEM image of large pit

Fig. 2 STEM image and EDS spectra (a) nanopipe without leak (b) nanopipe with leak.