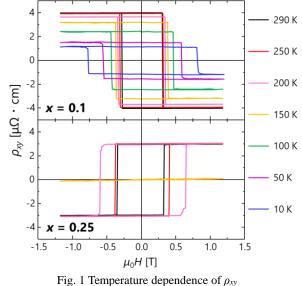
Temperature dependence of magneto-transport properties of Mn_{4-x}Ni_xN thin films

Univ. of Tsukuba¹, Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, INAC, SPINTEC², NIMS³ ^oTaro Komori¹, T. Gushi^{1,2}, A. Anzai¹, T. Hirose¹, K. Toko¹, S. Isogami³ and T. Suemasu¹

E-mail: s1820324@s.tsukuba.ac.jp

[Introduction]


Ferrimagnetic Mn₄N thin film is a candidate of the future domain wall (DW) motion devices thanks to its small spontaneous magnetization (M_S) of ~ 100 emu/cm³ and perpendicular magnetic anisotropy (PMA) of 1 Merg/cm³ [1]. We successfully grew Mn_{4-x}Ni_xN thin films on MgO(001) and STO(001) substrates by MBE, finding out that M_S drastically decreased by a small amount of Ni substitution and PMA was preserved meanwhile [2]. We note that the sign of anomalous Hall resistivity (ρ_{xy}) reversed between x = 0.1and 0.25, suggesting magnetization compensation of Mn₄N by Ni substitution [2]. It was reported that maximum performance of DW motion was observed in ferrimagnetic materials at their compensation points [3]. In this work, we observed temperature dependence of magneto-transport properties in order to analyze its mechanism of compensation.

[Experiment]

25-nm-thick $Mn_{4-x}Ni_xN$ (x = 0.1 and 0.25) epitaxial films were grown on STO(001) substrates. Afterwards, the stripe, with a 50 µm width and 80 µm length, was formed along the $Mn_4N[100]$ direction for each sample. Anomalous Hall effect measurement was performed for them in the temperature range 10 – 290 K. Magnetic field was applied perpendicularly to the planes.

[Results and discussion]

Figure 1 shows ρ_{xy} of Mn_{4-x}Ni_xN thin films on STO(001) substrates for x = 0.1 (top) and x = 0.25 (bottom). ρ_{xy} of Mn_{3.75}Ni_{0.25}N didn't change as much as that of Mn_{3.9}Ni_{0.1}N, which we attribute to weakened temperature dependence by alloying. Similar tendency was also found in Fe_{4-x}Mn_xN thin films [4]. Instead, the coercivity (μ_0H_C) greatly increased over 1.2 T and AHE couldn't be measured below 150 K in our system. We expect that this divergence occurred because of decrease in M_S , which corresponds to our previous report on temperature dependence of magnetization [2]. We're going to perform X-ray magnetic circular dichroism to verify their compensation.

of Mn_{4-x}Ni_xN at x=0.1 and 0.25 on STO(001).

[Reference]

- [1] K. Ito, Y. Yasutomi et al., AIP advences 6, 052601 (2015).
- [2] T. Komori et al., the 79th JSAP autumn meeting, 18a-131-7 (2018).
- [3] L. Caretta et al., Nat. Nanotechnol. 13, 1154 (2018).
- [4] S. Isogami et al., Jpn. J. Appl. 57, 120305 (2018).