多結晶 Si とアモルファス Si 基板への ホット C⁺イオン注入法による SiC ナノドットの形成(II) :C⁺ドーズ依存性

SiC Nano-Dot Formation in Poly-Si and Amorphous-Si Substrates

using Hot C⁺ Ion Implantation (II): C⁺ Dose Dependency 神奈川大理,東京農工大工* °金澤力斗,青木孝,鮫島俊之* 水野智久

Kanagawa Univ., Tokyo Univ. Agri. Tech.* R.Kanazawa, T. Aoki, T. Sameshima*, and T. Mizuno

1. 序論

我々は、アモルファス Si(a-Si)基板へのホット C^+ イオン注入により SiC ドットが形成され、PL 発光することを報告してきた[1].

今回,a-Si 及び poly-Si 基板へのホット C^+ イオン注入による SiC ドットの形成の C^+ ドーズ依存性について検討したので 報告する.

2. 実験

a-Si(50nm)及び poly-Si 基板へのホット C^+ イオン注入を行い,SiC ドットを形成した. C^+ ドーズ量(D_C)は 1×10^{16} cm⁻² から 6×10^{16} cm⁻² まで変化させ,イオン注入温度は 600° Cである.その後,結晶性を回復させる為,温度 1000° Cにて N_2 アニール処理を行った.PL スペクトルは,3.8eV 励起レーザーを用いて室温にて測定した.

3. 結果及び討論

図 1 は a-Si の PL スペクトルの N_2 アニール後の D_C 依存性である.PL スペクトルに大きな D_C による変化が存在していることが分かる.また最大 PL 強度は $D_C=2\times10^{16}$ cm $^{-2}$ が最適であるということが分かった.

図 2 は,各基板構造における最大 PL 強度の $D_{\rm C}$ 依存性を示している.a-Si は Poly-Si に比べて、低い $D_{\rm C}$ で PL 強度増大していることが確認された.

結論として Poly-Si に比べて a-Si は最大 PL 強度実現のための最適 Dc は低いことが分かった.本研究は Si 系光デバイスに応用が期待できる.

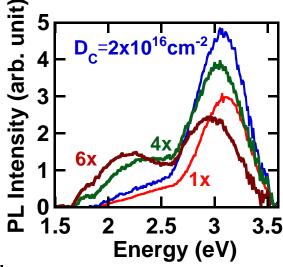


図 1. a-Si における N₂アニール後の PL スペクトルの Dc 依存性

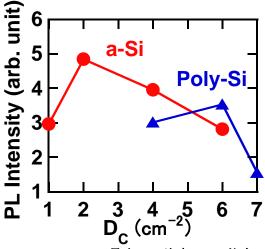


図 2. a-Si,Poly-Si の最大 PL 強度の Dc 依存性

謝辞:本研究の一部は科研費(17K06359)の助成を受けた.

文献

[1] 金澤他,第 79 回応用物理学会秋季学術講講 演会, 19a-233-5, 2018.