デバイスシミュレーションによる GaN HEMT のバッファトラップが 過渡応答とドレインリークに与える影響の検討

Study on effect of buffer trap to transient response and drain leakage of GaN HEMTs by TCAD

佐賀大学大学院 大石 敏之

Saga Univ. °Toshiyuki Oishi E-mail: oishi104@cc.saga-u.ac.jp

1.はじめに

GaN HEMT は、高周波高出力分野での増幅器 用トランジスタとして実用化されている。しか し、GaN 本来の物性を引出すことができれば、 さらなる高周波化や高電力化が期待できる。 現在、SiC 基板上 GaN HEMT は、故意に深い 準位を導入したバッファ層を形成している。こ

のため、高周波化のため、チャネル層を薄膜化 すると、2次元電子ガスがバッファ層に近づき、 電気的特性(特に過渡応答)に影響を与えると考 えられる。そこで、今回、デバイスシミュレー ションによりバッファトラップが与える影響 について検討した。

2. シミュレーション方法

GaN HEMT のエピ構造は、基板上にバッファ層、 チャネル層、バリア AlGaN 層とした。電極は AlGaN 表面にソース、ゲート、ドレインを形成 し、ゲート長は1 µmである。トラップはバッ ファ層にのみ、アクセプタ型を均一にドープし た。トラップのエネルギーと捕獲断面積は、そ れぞれ、0.62 eV、 5.3×10^{-15} cm²とした[1]。 トラップは過渡応答の他にドレインリークに も影響する[2]。そこで、チャネル層厚を50~ 1000 nm と変えて、過渡応答(オフからオン)と $I_{D}-V_{GS}$ 特性($V_{DS} = 12$ V)をTCAD(シルバコ社)で 計算した。

3. 計算結果と考察

図 1(a)、(b)にバッファ層ありの過渡応答特 性と In-V_{GS}特性を示す。チャネル層厚が 1000 か ら200 nmに薄くなると過渡応答は改善するが、 より薄膜化すると過渡応答は逆方向に悪化す る。一方、ドレインリークはチャネル層が200 nm以下で抑制されている。チャネル層が厚い場 合、ゲートよりドレインからのポテンシャルの 影響が強くなり、ドレインリーク電流が発生、 仮想ゲート効果が発生する。一方、チャネル層 が薄い場合、ゲートからのポテンシャルの影響 が強くなるため、ドレインリーク電流が抑制さ れ、ゲートラグの傾向が強くなる。

GaN 基板ではホモ成長となり、バッファ層の トラップが低減される。図2にチャネル層のみ (理想状態)での I_D-V_G 特性を示す。なお、トラ ップがないため、過渡応答は全てのチャネル層 厚で良好な特性が得られている(図示せず)。図 2よりバッファ層がない場合よりドレインリー クが発生しやすいことがわかり、チャネル層厚 が100 nm でも若干、ドレインリークが発生し ている。

4.まとめ

バッファ層のトラップがドレインリークと過 渡応答に与える影響をデバイスシミュレーシ ョンで検討した。チャネル層が薄膜化するとド レインリークは改善するものの、過渡応答特性 は逆の傾向を示すことがわかった。また、バッ ファ層がない理想的な場合、過渡応答は良好で あるが、ドレインリークが発生しやすいことが わかった。

謝辞

本研究は文部科学省「省エネルギー社会の実 現に資する次世代半導体研究開発」の委託を受 けたものです.

参考文献

[1] K.Kanegae et al., APEX11, p.071002 (2018). [2] 林他, 信学会論文誌, J96-C, p.200(2013).

Fig.1 (a) transient response, (b) ID-VGS characteristics for GaN HEMTs with buffer layer.

0