GaN 横型 MISFET チャネル移動度に対する界面準位の影響

The effect of interface state on channel mobility in GaN lateral MISFET.

名大院工¹,名大未来材料・システム研究所²,物質・材料研究機構³,名大赤﨑記念研究センター⁴,名大 VBL⁵

○安藤 悠人 1, 中村 徹 2, 出来 真斗 2, 宇佐美 茂佳 1, 田中 敦之 2.3, 渡邉 浩崇 2,

久志本 真希¹, 新田 州吾², 本田 善央², 天野 浩^{2,3,4,5}

Dept. of Elec., Nagoya Univ.¹, IMaSS, Nagoya Univ.², NIMS³, ARC, Nagoya Univ.⁴, VBL, Nagoya Univ.⁵

^OY. Ando¹, T. Nakamura², M. Deki², S. Usami¹, A. Tanaka^{2,3}, H. Watanabe²,

M. Kushimoto¹, S. Nitta², Y. Honda², and H. Amano^{2,3,4,5}

E-mail: <u>yuuto_a@nuee.nagoya-u.ac.jp</u>

窒化ガリウム(GaN)パワーMISFET において、導通損失を物性限界に近づけるためゲート絶縁膜/GaN 界面におけるチャネル移動度の向上が必須である. Si MOSFET においてチャネル でのキャリアの散乱要因は、ゲート電極から印可されるチャネルに対して垂直の実効電界強度 E_{eff} あるいは表面電子濃度 N_{s} に依って異なることが知られている^[1]. 以前我々は Al₂O₃/GaN 蓄積チャネル横型 MISFET における実効チャネル移動度 μ_{eff} の成分分離を行い、低電界領域 での Coulomb 散乱を受けた移動度成分 μ_{Coulomb} が Si MOSFET と同様 N_{s} のべき乗に比例するこ とを報告した^[2]. 本研究では μ_{Coulomb} への界面準位密度 D_{it} の影響の解明を目的とする.

c 面低抵抗 GaN 基板上に MOVPE 法により意図的なドーピングをしない GaN を 5 μ m 成長 し、Si をイオン注入しソース・ドレイン領域を形成した.ゲート絶縁膜として熱 ALD 法によ りステージ温度 350℃で TMA・H₂O を用いて Al₂O₃を 50nm 堆積した.ソース・ドレイン電 極として Ti/Al,ゲートおよびパッド電極として Ni/Au を堆積し、蓄積チャネル横型 MISFET を作製した.金属の堆積には電子線蒸着装置を用いた.測定にはチャネル長 L_{ch} =100 μ m の素

子を用いた.測定後に N₂雰囲気中 400℃,1時間の熱 処理(postmetallization annealing : PMA^[3])を施した後再 度測定を行い,PMA 前後での特性の変化を観察した.

Fig.1 に Ni/Al₂O₃/n-GaN(Si:4×10¹⁶ cm⁻³) MIS キャパシ タにおける D_{it} 分布の PMA による変化を示す. PMA 処 理により伝導帯下端 E_C 近傍の D_{it} は Terman 法の検出 下限以下まで減少し, E_C -0.2~0.3 eV 付近では一桁程 度減少した. またフラットバンド電圧 V_{FB} は PMA によ って 2.7 V 程度正方向にシフトし, Ni の仕事関数と n-GaN の電子親和力の差より求まる理想 V_{FB} に近付くこ とから, PMA は D_{it} および正の実効固定電荷 Q_F の双方 の低減に効果があることを確認した.

MISFET においては伝達特性から PMA によってサ ブスレッショルドスロープは 115 から 87 mV/decay へ と減少し、 V_{TH} は 2.8 V 程度正にシフトしたことから、 MIS キャパシタと同様に PMA によって D_{it} および Q_F が減少したと考えられる. Fig.2 に $\mu_{Coulomb}$ の N_s 依存性 を示す. ここで N_s はゲート-チャネル間容量-電圧特性 から求め、 $\mu_{Coulomb}$ は測定した μ_{eff} のうち E_{eff} の増大に 伴い低下する成分を Matthiessen's rule より除くことで 抽出した. $\mu_{Coulomb}$ は PMA により高移動度側へシフト していることから、PMA は MISFET においても D_{it} お よび Q_F の減少に効果があり、Coulomb 散乱を受けた低 電界での移動度が向上することが分かった.

Fig.1 *D*_{it} distribution of Ni/Al₂O₃/n-GaN MIS capacitor before and after PMA.

Fig.2 Electron mobility in low effective electric field versus surface electron density of MISFET before and after PMA.

【謝辞】本研究は内閣府「戦略的イノベーション創造プログラム(SIP)」の助成を受け行われました. ^[1] S. Takagi, *et al.*, IEEE Trans. Electron Devices, **41**, 2357 (1994).

^[2] 安藤他, 応用物理学会第78回秋季学術講演会, 21a-331-5 (2018).

^[3] Hashizume, *et al.*, Appl. Phys. Exp., **11**, 124102 (2018).