複合成膜による低屈折率光学薄膜の作製の検討

Low-Refractive-Index Thin Films Fabricated by Electron Beam and Sputtering Evaporation 東海大院工¹, ㈱シンクロン² ⁰速水 舞¹, 都野 義樹¹, 室谷 裕志¹, 松本 繁治² Grad. Sch. of Eng., Tokai Univ.¹, SHINCRON CO., LTD.² ⁰Mai Hayamizu¹, Yoshiki Tsuno¹, Hiroshi Murotani¹, Shigeharu Matsumoto² E-mail: murotani@keyaki.cc.u-tokai.ac.jp

1.背景・目的

光学部品に利用されている反射防止膜は,超低屈折 率の光学薄膜を最表層に用いることで入射角依存性を 改善している.一般に,屈折率の低減には膜の密度を 下げる方法がとられているが,従来の手法では十分な 機械的強度が得られないため剥離や接触による潰れな どが発生する.先行研究^{1,2)}では複合成膜手法を用いる ことで機械的強度が高く屈折率1.35のSiO2光学薄膜 の作製に成功したが,なぜ屈折率が下がり,機械的強 度を得ることができるかについては解明中である.本 研究では,SiO2以外の材料を使用することで複合成膜 手法のメカニズムを解明することを目的とした.

2.実験方法

複合成膜(EB(Electron Beam)法+スパッタリング法) を用いて N-BK7(SCHOTT 社製)光学ガラス基板上に低 屈折率光学薄膜を成膜した. 複合成膜装置の概念図を Fig. 1 に示す³⁾. さらに,低屈折率光学薄膜作製時の成 膜条件を Table1 に示す. また,分光光度計(日本分光社 製: V670)を用いて膜の分光透過スペクトルの測定を行 うことで,屈折率を算出した.そして,膜の構造を SEM(Scaning Electron Microscope,日立ハイテク社製: S-4800)を用いて観察した.さらに,機械的特性につい ては密着性をクロスハッチ試験(ISO 9211-4),硬度を鉛 筆硬度試験(JIS K 5600-5-4)により評価した.

Fig. 1 Schematic diagram of the combination coating equipment

Table 1 Deposition parameters of simultaneous deposition						
MgF ₂ composite film		Al ₂ O ₃ composite film				
EB	Sputtering	EB	Sputtering			
Material: MgF ₂	Target: Si	Material: Al ₂ O ₃	Target: Al ₂ O ₃			
EB current: 25mA	RF power: 50, 200W	EB current: 450mA	RF power: 50, 200W			
O ₂ gas: 0sccm	O2 gas: 1sccm Ar gas: 160sccm	O ₂ gas: 12sccm	O2 gas: 30sccm Ar gas: 120sccm			

3.結果および考察

今回の実験により作製された光学薄膜の屈折率は, MgF2 光学薄膜において 1.34, Al₂O₃ 光学薄膜において

1.50 となり、一般的な成膜手法よりも低屈折の膜を作 製することに成功した.また、複合成膜で成膜された 低屈折率光学薄膜はポーラスな構造を示したことから, この構造により低屈折化が生じていると考えられる. 屈折率から算出した膜の充填密度と機械的特性を評価 した結果を Table2 に示す. Table2 より, SiO2 光学薄膜と Al2O3光学薄膜は、充填密度は同等であるが、MgF2光学 薄膜は充填密度が高いことがわかる.この要因として、 MgF2 は結晶性を持つことから膜の構造上の自由度が 小さく、密度低下が起こりにくいことに起因している と考えられた.これより、結晶性を持つ材料では膜の 低屈折化が阻害されると考えられる.また, 膜剥がれ は生じなかったことから、密着性については従来報告 されていた低屈折率光学薄膜よりも向上しており、実 用上問題はないと言える. さらに, 複合成膜手法によ る低屈折率光学薄膜は,超音波洗浄を行っても膜剥が れがないことも確認された.

Table 2 Mechanical properties of thin film

Material	RF power(W)	Refractive Index	Packing density (%)	Crosshatch test
MgF ₂	50	1.34	89	25/25
	200	1.36	95	25/25
Al ₂ O ₃	50	1.50	79	25/25
	200	1.55	87	25/25

4.結論

複合成膜手法を用いることで, SiO2 光学薄膜の他に 低屈折 MgF2光学薄膜,低屈折率 Al2O3 光学薄膜の作製 に成功した.また,非結晶性をもつ材料と比べ,結晶 性をもつ材料は低屈折率化しにくいと考えられる.

5.謝辞

成膜に協力して頂いたファインクリスタル株式会社 の清野氏,買手氏に感謝致します.測定に協力して頂い た東海大学研究推進部技術共同管理室の森川氏に感謝 致します.

6.参考文献

[1]田島直弥, 複合成膜により成膜された光学薄膜の光 学特性及び機械的特性, 2017

[2]N. Tajima, H. Murotani, S. Matsumoto, H. Honda, "Stress control in optical thin films by sputtering and electron beam evaporation", Appl. Opt., Vol. 56, Issue 4, pp. C131-C135 (2017).

[3]学校法人東海大学,ファインクリスタル株式会社,株式会社シンクロン.成膜方法.特許第 5901571 号.2016-03-18