λ相 Ti₃O₅ エピタキシャル薄膜におけるシード層からの Mg 拡散の効果

Influence of Mg diffusion from seed layer on the stability of λ-Ti₃O₅ epitaxial thin film 東大院理 [○]陳 昊,廣瀬 靖,長谷川 哲也

Univ. of Tokyo °H. Chen, Y. Hirose, T. Hasegawa

E-mail: jingou0203@chem.s.u-tokyo.ac.jp

【はじめに】 Ti_3O_5 の準安定相である λ - Ti_3O_5 は、熱・光照射・圧力印加などの外場によって高温安定相 の α - Ti_3O_5 や低温安定相の β - Ti_3O_5 へと構造相転移し、電気伝導性や光学特性が変化することから、記録材料や蓄熱材料として注目されている[1,2]。 λ - Ti_3O_5 の合成法としては、 TiO_2 を水素中で強還元する方法が一般的に用いられており、その形態はナノ粒子や多結晶薄膜に限られていたが、我々は擬ブルッカイト型 $MgTi_2O_5$ をシード層とすることで λ - Ti_3O_5 のエピタキシャル成長に成功した[3]。一方、ほぼ同一の条件でエピタキシャル成長した場合でも、 λ - Ti_3O_5 の単斜晶構造に由来する 203 と 20-3 回折ピークの分裂幅が狭い結晶や、分裂を示さない直方晶の α - Ti_3O_5 の結晶が得られることがあった。本研究では、 Ti_3O_5 粉末に Mg をドープすると、ドープ量の増大に伴って室温最安定相が β → λ → α 相へと変化するという最近

の報告[4]に注目し、 $MgTi_2O_5$ シード層からの Mg 拡散が、 Ti_3O_5 薄膜の相安定性に影響を与える可能性を検討した。

【試料作製】試料の合成にはPLD法を用いた。まず、LaAlO3 (110)単結晶基板上に製膜温度 600 °C、酸素分圧 1×10^4 Torr で $MgTi_2O_5$ シード層をエピタキシャル成長した。その後、TiOターゲットを用い、酸素分圧 2×10^6 Torr で Ti_3O_5 薄膜を堆積した。 Ti_3O_5 薄膜の厚さは 90 nm に固定し、 $MgTi_2O_5$ シード層の厚さ (t_{seed})を 1 nm-40 nm の範囲で変えた試料を作製した。

【結果と考察】 XRD 測定により、 $t_{seed} \ge 2$ nmで(100)配向した λ -Ti₃O₅ のエピタキシャル成長を確認した(Fig. 1a)。 $t_{seed} = 2$ nm では単斜晶構造に起因する 203 と 20-3 回折ピークの明瞭な分裂(2 θ = 32.3°, 32.9°)がみられたが、 t_{seed} が増加すると分裂幅は減少し、回折角も直方晶の α -Ti₃O₅ の文献値 (2 θ = 32.4°)に近づいた(Fig. 1b)。また、SEM-EDX 測定(加速電圧3.0 kV、検出深さ~80 nm)の結果、すべての試料で Ti₃O₅ 薄膜への Mg の拡散が確認された。Mg/Ti 比を半定量分析した結果、 t_{seed} の増大に伴ってMg/Ti 比が増大し、Mg/Ti~4%(t_{seed} = 20 nm)で飽和した(Fig. 2)。以上より、MgTi₂O₅ シード層からTi₃O₅ 薄膜への Mg 拡散が、 λ -Ti₃O₅と α -Ti₃O₅の相対的な安定性に影響を与えることが分かった。

【参考文献】[1] H. Tokoro *et al.*, Nat. Commun. **6**, 7037 (2015). [2] S. Ohkoshi et al., Nat. Chem. **2**, 539 (2010). [3] 陳他、第 79 回秋季学術講演会, 18p-223-8. [4] M. Wang *et al.*, J Alloy Com. **774**, 1189 (2019).

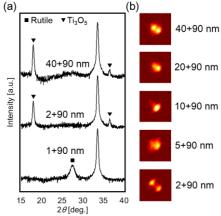


Fig.1 (a) θ -2 θ XRD pattern and (b) 2D images around 20±3 peak of the λ -Ti₃O₅ thin films grown on the MgTi₂O₅ seed layer with various thickness.

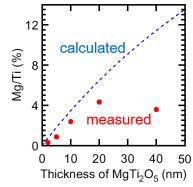


Fig. 2 Mg/Ti ratio of the λ -Ti₃O₅ thin films grown with various t_{seed} . The dashed line denotes the value calculated assuming a perfect mixing between the MgTi₂O₅ and Ti₃O₅ layers.