
## Magneto-transport Properties of (Mn<sub>1-x</sub>Co<sub>x</sub>)<sub>2</sub>VAl Heusler Alloy Films

## Tohoku Univ., °Kenji Fukuda, Mikihiko Oogane, Masakiyo Tsunoda, and Yasuo Ando E-mail: fukuda@mlab.apph.tohoku.ac.jp

A Half-metallic ferrimagnet,  $(Mn_{1-x}Co_x)_2$ VAl is an ideal material for spintronic applications because of its high spin polarization and low saturation magnetization  $M_{\rm s}$ , and theoretically becomes a fully compensated ferrimagnet at x = 0.5 [1]. However, the magneto-transport properties of the thin films have never been reported. The anomalous Hall effect (AHE) is largely affected by the electronic structure in the vicinity of the Fermi energy  $E_{\rm F}$ . In this study, the relation between the AHE and the  $M_{\rm s}$  in  $(Mn_{1-x}Co_x)_2$ VAl thin films has been systematically investigated to reveal their electronic properties.

50-nm-thick  $(Mn_{1-x}Co_x)_2$ VAl thin films were grown on a MgO (001) single-crystal substrates using a magnetron sputtering technique. The structural and magnetic properties of the prepared films were characterized by using XRD and a SQUID, respectively. The AHE was measured in the 10-300 K temperature range using DC four-probe method of a PPMS. The Hall resistivity  $\rho_{xy}$  and the longitudinal resistivity  $\rho_{xx}$ were simultaneously measured. An external magnetic field H up to 50 kOe was applied perpendicular to (001) film plane, and electric current was flowed along  $(Mn_{1-x}Co_x)_2$ VAI [100] direction. The Hall conductivity  $\sigma_{xy}$  is determined using the formula:  $\sigma_{xy} = \rho_{xy}/(\rho_{xy}^2 + \rho_{xx}^2)$ , and the anomalous Hall conductivity  $\sigma_{AH}$ is obtained by extrapolating the linear part of the  $\sigma_{xy}$  to H = 0.

Fig. 1 shows x dependences of the ordered parameters S. The obtained values are more than 60% for B2 and 40% for  $L2_1$ , at each x. These are good evidences that the highly-ordered epitaxial films were prepared. Fig. 2 shows x dependences of the  $M_s$  and the  $\sigma_{AH}$ , measured at 50K. We obtained the low  $\sigma_{AH}$  for x = 0.5, corresponding to the low  $M_s$ . The  $\sigma_{AH}/M_s$  ratio is 0.38, 0.13, and 0.24 (cm<sup>2</sup>/ $\Omega$ emu) for x = 0, 0.5 and 1, respectively. This relatively high  $\sigma_{AH}/M_s$  ratio for x = 0 may be caused by its *d*-orbital band crossing the E<sub>F</sub>. This work was supported in part by Center for Spintronics Research Network, Organization for Advanced Studies, Center for Science and Innovation in Spintronics, and Grant-in-Aid for Research Fellow of the Japan Society for the Promotion of Science.



[1] I. Galanakis et al., Phys. Rev. B 75, 092407 (2007).

Fig. 1 x dependences of  $S_{B2}$  and  $S_{L21}$ 

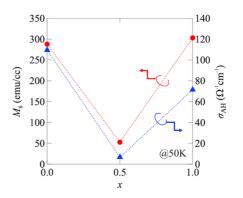



Fig. 2 x dependences of  $M_{\rm s}$  and  $\sigma_{\rm AH}$  at 50K