軌道フェリ磁性体 CoMnO3 における磁気異方性定数の温度変化

Temperature dependence of magnetic anisotropy in orbital ferrimagnetism 筑波大学 小泉 洗生、井上 順一郎、柳原 英人 Univ. of Tsukuba H. Koizumi, Jun-ichiro Inoue, and H. Yanagihara E-mail:s1720359@s.tsukuba.ac.jp

Introduction

CoMnO₃ は、イルメナイト構造の酸化物で Co²⁺ (d^{7} : S = 3/2)と Mn⁴⁺(d^{3} : S = 3/2)が規則的な層構 造をとり、互いに反強磁性的な超交換結合で結ばれているため、それぞれのスピンは打ち消し合 う。しかし、六配位の結晶場中の Co²⁺ は軌道角運動量が消失せず、系全体では Co の軌道角運動 量のみが残る「軌道フェリ磁性」となる[1]。一般に、軌道角運動量が消失していない磁性体では、 スピン軌道相互作用 (SOI)により大きな磁気異方性 (K_u)が発現することが知られており、 CoMnO₃においても巨大な負の K_u が観測されている[2]。

 Co^{2+} が含まれるフェリ磁性体として知られている CoFe₂O₄の K_u とその温度変化については、 SOI を取 り入れた Co^{2+} の single ion model を用いて理論的な説明 が Slonczewski によりなされ、 K_u は SOI の 2 次に比例 し、その温度依存性は指数関数的に減少することが示さ れた[3]。一方で、軌道フェリ磁性である CoMnO₃の K_u の温度依存性については報告がないため、CoMnO₃薄膜 を作製し、磁化と K_u の温度依存性を測定した。

Method

試料は反応性 RF マグネトロンスパッタリング法に より作製した。ターゲットには CoMn(1:1) 合金を用い、 Ar +O₂ (15:2) 雰囲気中、710℃で成膜を行った。試料の 表面状態は RHEED 像、膜厚測定は X 線反射率、格子定 数測定並びに構造決定は X 線回折法 (XRD)により評価 した。また、磁気特性の評価には VSM による磁化容易 軸方向の磁化測定(±9 T, @110~390 K)および、磁気トル ク測定 (9 T, @110~390 K) を行った。

Results

参考文献

XRD より、イルメナイト構造の薄膜であることが確認 された。磁化測定の結果(Fig.1)、飽和磁化(M_s)の温度依存 性がフェリ磁性でなく強磁性的であることが示唆される。 また、 K_u についても温度依存性を測定すると M_s と K_u が広 い温度範囲で比例していることが確認された(Fig.2)。軌道 フェリ磁性では、 $M_s \propto < L_z >$ であるため、この結果は K_u が SOIの1次に比例することを示唆している。講演では、 K_u の温度依存性についてその詳細を報告する。

temperatures.

[1] R. M. Bozoth and D. Walsh, J. Phys. Chem. Solids. Pergamon Press. 5, 299(1958).

[2] H. Koizumi, S. Sharmin, K. Amemiya, M. S. Sakamaki, J-I. Inoue, and H. Yanagihara, submitted.

[3] J. C. Slonczewski, Physical Review 110, 1341 (1958).