The effect of voltage on reservoir computing performance of a spin torque oscillator
AIST\(^1\), The Univ. of Tokyo\(^2\), JST PRESTO\(^3\), ISSP, The Univ. of Tokyo\(^4\)
\(^{3}\)Sumito Tsunegi\(^1\), Tomohiro Taniguchi\(^1\), Kohei Nakajima\(^{2,3}\), Shinji Miwa\(^4\), Kay Yakushiji\(^1\), Akio Fukushima\(^1\), Shinji Yuasa\(^1\), and Hitoshi Kubota\(^1\)
E-mail: tsunegi.sb@aist.go.jp

Spin torque oscillator (STO) driven by highly nonlinear motion of magnetization can generate transient dynamics, which can be useful to realize physical reservoir computing [1-3]. Using an STO for the reservoir computing, high recognition rate was achieved in spoken digit recognition. [4] As a figure of merit of the reservoir computing, memory capacity \(C_{\text{STM}}\) is widely used, which can be estimated from short-term memory task. [3] In the task, a random pulse sequence was given to the reservoir as input (duration of a unit pulse \(\Delta t\)). The transient behavior of the reservoir was analyzed to extract the information of the input. We evaluated \(C_{\text{STM}}\) of STOs in both simulation [5] and experiment [6]. In the simulation the optimum \(\Delta t\) at which \(C_{\text{STM}}\) exhibits a maximum was about one third of the transient time of the STO. Experimentally the transient time of the STO decreased with increasing the pulse voltage \(V_{\text{int}}\) [7]. Therefore, it is expected that the optimum \(\Delta t\) at which \(C_{\text{STM}}\) exhibits a maximum decreases at a high voltage and increases at a low voltage. In other words, the memory capacity will exhibit maximum at high (low) pulse voltage \(V_{\text{int}}\) when the pulse duration is short (long). In this study, we performed systematically the short memory task to evaluate the memory capacity in vortex-STO as functions of pulse duration and voltage. In the task, random binary input pulses were given to the STO. Virtual nodes (>100) were defined in one pulse. A product-sum operation of the output (STO voltage) and weights (controlled) at the nodes was performed to reconstruct the input signal (see details in Ref. 6). Figure 1 shows the \(V_{\text{int}}\) dependence of \(C_{\text{STM}}\) with the various \(\Delta t\). A maximum of the memory capacity shifts from high to low \(V_{\text{int}}\) as \(\Delta t\) increases, which is consistent with our expectation.

These results obtained from a project (Innovative AI Chips and Next-Generation Computing Technology Development/ (2) Development of next-generation computing technologies/ Exploration of Neuromorphic Dynamics towards Future Symbiotic Society) commissioned by NEDO.

<References>