Enhancement of spin-orbit torque in W/CoFeB/MgO by controlling W resistivity ¹Laboratory for Nanoelectronics and Spintronics, RIEC, Tohoku Univ. ²FRIS, Tohoku Univ. ³CSIS, Tohoku Univ. ⁴CIES, Tohoku Univ. ⁵CSRN, Tohoku Univ. ⁶CSIS (CRC), Tohoku Univ. ⁷WPI-AIMR, Tohoku Univ. <u>K. Furuya</u>¹, Y. Takeuchi¹, Y. Takahashi¹, C. Zhang¹⁻⁴, B. Jinnai³, S. Fukami^{1,3-7} and H. Ohno^{1,3-7} E-mail: <u>kaitof@riec.tohoku.ac.jp</u>

Spin-orbit torques (SOT) allows an electrical control of a magnetization orientation in magnetic heterostructures^[1-3]. SOT has two components with different symmetries: the Slonczewski-like (SL) and field-like (FL) torques, whose magnitudes are characterized as spin-orbit torque efficiency parameters (ξ_{SL} , ξ_{FL})^[4], where ξ_{SL} is equivalent to the effective spin Hall angle. To achieve the efficient control of the magnetization orientation, a material system that exhibits large ξ_{SL} is desirable. W is a promising material exhibiting large ξ_{SL} ^[5-8] and a recent study showed a variation of ξ_{SL} by a factor of 2-3 with W resistivity ρ_W in the range of 100-240 µΩcm^[7]. Here we study the SOT of the W/CoFeB/MgO heterostructures by controlling ρ_W over a wide range (180-730 µΩcm) and discuss the mechanism for SOT generation in the heterostructures.

All stacks, consisting of W(5)/CoFeB(t_{CoFeB})/MgO(1.3)/Ta(1) (thickness in nm), are deposited on Si substrates by sputtering. Here t_{CoFeB} is the thickness of the CoFeB layer. Ar gas pressure to deposit W is controlled to change ρ_W . As shown in Fig. 1(a), ρ_W increases with Ar gas pressure by a factor of 4. SOT effective fields are evaluated using microfabricated devices by an extended harmonic Hall measurement^[9,10]. Figure 2 shows the obtained ρ_W dependence of ξ_{SL} in the W/CoFeB/MgO structures, together with the reported values^[5-7]. The results before and after

annealing at 300°C are shown. Our results show that ζ_{SL} increases with the increasing ρ_W , following the trend of previous studies^[5,7,8]. The highest ζ_{SL} of -1.2 is the largest magnitude which has ever been reported. It is also found that $\zeta_{SL(FL)}$ decreases (increases) by annealing. From a relation between transverse and longitudinal resistivity, we will discuss the mechanism accounting for the generation of SOT in this system.

This work was partly supported by ImPACT Program of CSTI and JST-OPERA. Y. Takeuchi acknowledges GP-Spin of Tohoku Univ.

- [1] I. M. Miron et al., Nature 476, 189 (2011).
- [2] L. Liu *et al.*, Science **336**, 555 (2012).
- [3] S. Fukami et al., Nat. Nanotechnol. 11, 621 (2016).
- [4] C.-F. Pai et al., Phys. Rev. B 92, 064426 (2015).
- [5] C.-F. Pai et al., Appl. Phys. Lett. 101, 122404 (2012).
- [6] K. -U. Demasius et al., Nat. Commun. 7, 10644 (2016).
- [7] C. Zhang et al., Appl. Phys. Lett. 109, 192405 (2016).
- [8] Y. Takeuchi et al, Appl. Phys. Lett. 112, 192408 (2018)
- [9] C. O. Avci et al., Phys. Rev. B 90, 224427 (2014).
- [10] Y.-C. Lau et al., Jpn. J. Appl. Phys. 56, 0802B5 (2017).

Fig. 1. ρ_W vs Ar gas pressure.

