重金属/秩序化した Mn₃Ir 中の磁気抵抗効果

Magnetoresistance in bilayers of heavy metal and non-collinear antiferromagnet 京大化研⁻¹, 阪大 CSRN² ^O(D)小田 研人⁻¹, 森山 貴広^{-1,2}, 小野 輝男^{-1,2} ICR, Kyoto Univ.⁻¹, CSRN, Osaka Univ.⁻², ^oKent Oda⁻¹, Takahiro Moriyama^{-1,2}, Teruo Ono^{-1,2}

E-mail: oda.kento.76e@st.kyoto-u.ac.jp

Antiferromagnetic spintronics is an emerging field which utilizes antiferromagnets(AFM) as active components in spintronic applications. However, the difficulty of the electrical detection of the antiferromagnetic moments obstructed its experimental advances. Recent studies have overcome this fact by using anisotropic magnetoresistance (AMR) and the spin Hall magnetoresistance (SMR). More intriguing magnetoresistive effect in AFMs is the giant anomalous Hall effect due to the chiral magnetic structure in L1₂-ordered Mn₃Ir. Thus, it is important to investigate the MR in antiferromagnetic multilayer systems with Mn₃Ir. In this work, we examined the MR in Pt/Mn₃Ir and W/Mn₃Ir bilayers.

W 6 nm/Mn₃Ir 10 nm/MgO 2nm/W 2 nm and Pt 6 nm/Mn₃Ir 10 nm/MgO 2 nm/W 2 nm were deposited on a SiO₂ substrate by magnetron sputtering. The films were annealed at 220°C for 30 min. Figs. (a) and (b) show the X-ray diffraction of the films before and after the annealing. A distinct difference between the W/Mn₃Ir and the Pt/Mn₃Ir multilayers can be found in the evolution of the (110) superlattice peak which indicates the L1₂-ordered Mn₃Ir in W/Mn₃Ir. Then, the films were patterned into a 120-µm-long and

30-µm-wide Hall bar structure by a conventional photolithography and Ar ion milling process. The longitudinal R_{xx} resistances were measured under the current of 1 mA in a rotating magnetic field with 9 T (c)-(e)). Figures (f) and (g) show (Figs. the magnetoresistance ratio $\Delta R_{xx}/R_{xx}$ as functions of α , β , and γ before and after annealing. Both W/Mn₃Ir and Pt/Mn₃Ir samples did not show a-dependent magnetoresistive behaviors before annealing. On the other hand, after annealing, appreciable MRs were observed but the behaviors with respect to the rotating angles differ for the two samples. Further investigation on W/Mn₃Ir revealed that there is an additional component of the MR, which cannot be accounted for conventional AMR and SMR, presumably derived from the non-collinear magnetic structure associated with the L1₂-ordered Mn₃Ir[1]. [1]https://doi.org/10.3379/msjmag.1901R001

Figure XRD patterns for (a)W 6 nm/Mn3Ir 30 nm/MgO 2 nm/W 2 nm and (b)Pt 6 nm/Mn3Ir 30 nm/MgO 2 nm/W 2 nm. (c-e) Experimental setup of the electrical transport property measurement and the definition of the coordinate system. *H* denotes the magnetic field and *J* denotes the d.c. current density. Angular dependence of the longitudinal magnetoresistance ($\Delta R_{xx}/R_{xx}$) under the field of 9 T at 300 K for the as-deposited (gray) and annealed (otherwise) W/Mn₃Ir and (g) for the as-deposited (gray) and annealed (other plots) Pt/Mn₃Ir.