Antiferromagnetic spintronics is an emerging field which utilizes antiferromagnets (AFM) as active components in spintronic applications. However, the difficulty of the electrical detection of the antiferromagnetic moments obstructed its experimental advances. Recent studies have overcome this fact by using anisotropic magnetoresistance (AMR) and the spin Hall magnetoresistance (SMR). More intriguing magnetoresistive effect in AFMs is the giant anomalous Hall effect due to the chiral magnetic structure in $L1_2$-ordered Mn_3Ir. Thus, it is important to investigate the MR in antiferromagnetic multilayer systems with Mn_3Ir. In this work, we examined the MR in Pt/Mn_3Ir and W/Mn_3Ir bilayers.

$W \ 6 \ \text{nm}/\text{Mn}_3\text{Ir} \ 10 \ \text{nm}/\text{MgO} \ 2 \ \text{nm}/W \ 2 \ \text{nm}$ and $Pt \ 6 \ \text{nm}/\text{Mn}_3\text{Ir} \ 10 \ \text{nm}/\text{MgO} \ 2 \ \text{nm}/W \ 2 \ \text{nm}$ were deposited on a SiO$_2$ substrate by magnetron sputtering. The films were annealed at 220ºC for 30 min. Figs. (a) and (b) show the X-ray diffraction of the films before and after the annealing. A distinct difference between the W/Mn_3Ir and Pt/Mn_3Ir multilayers can be found in the evolution of the (110) superlattice peak which indicates the $L1_2$-ordered Mn_3Ir in W/Mn_3Ir. Then, the films were patterned into a 120-μm-long and 30-μm-wide Hall bar structure by a conventional photolithography and Ar ion milling process. The longitudinal R_{xx} resistances were measured under the current of 1 mA in a rotating magnetic field with 9 T (Figs. (c)-(e)). Figures (f) and (g) show the magnetoresistance ratio $\Delta R_{xy}/R_{xx}$ as functions of α, β, and γ before and after annealing. Both W/Mn_3Ir and Pt/Mn_3Ir samples did not show α-dependent magnetoresistive behaviors before annealing. On the other hand, after annealing, appreciable MRs were observed but the behaviors with respect to the rotating angles differ for the two samples. Further investigation on W/Mn_3Ir revealed that there is an additional component of the MR, which cannot be accounted for conventional AMR and SMR, presumably derived from the non-collinear magnetic structure associated with the $L1_2$-ordered Mn_3Ir[1].

[1]https://doi.org/10.3379/msjmag.1901R001