Y字磁性細線を用いた電流誘起磁壁移動ロジックの研究

Investigation of Y-shaped magnetic wire logic device by current-induced domain wall motion

Yuichiro Kurokawa¹, Masakazu Wakae¹, Masahiro Itoh¹, Satoshi Sumi², Hiroyuki Awano², Kohei Ohnishi³, Hiromi Yuasa¹


Yuichiro Kurokawa¹, Masakazu Wakae¹, Masahiro Itoh¹, Satoshi Sumi², Hiroyuki Awano², Kohei Ohnishi³, Hiromi Yuasa¹

E-mail: ykurokawa@ed.kyushu-u.ac.jp

[Introduction] Manipulating magnetic domain wall (DW) using electric current has been paid much attention from the viewpoint of device application such as new types of magnetic memories and logic circuit. In previous study, we have reported magnetic wire logic device using current-induced domain wall motion (CIDWM) whose driving force is spin transfer torque. Recently, the CIDWM by spin orbit torque (SOT) originated from the spin Hall effect (SHE) and Dzyaloshinsky-Moriya interaction (DMI) has been reported. In this study, we observed logic operation in Y-shaped magnetic wire using CIDWM by SOT.

[Experiment] Ta/GdFe wire was deposited on a thermally oxidized Si substrate by using DC magnetron sputtering. The Y-shaped magnetic wire was fabricated by electron beam lithography. The magnetic properties of Ta/GdFe wire was observed by using anomalous Hall effect. The logic operation was observed by using Kerr microscope.

[Result] Figure 1 shows AND logic operation in the Gd-Fe wire. The 1 or 0 states correspond to up or down magnetization. When input corresponds to 1,0 or 0,1, the domain wall could not go through junction. As a result, the output can be 0. On the other hand, when the input corresponds to 1,1, the domain wall could go through junction shown in the Fig. 1. Therefore, the output can be 1. It indicates that Y-shaped magnetic wire can be used as AND logic device.

This work was supported by the Nanotechnology Platform Project (Toyota Technological Institute, No. F-18-TT-0034), MEXT KAKENHI Grant Number 18K13805 (2018-2020), Iketani Science and Technology Foundation, and a research grant from The Mazda Foundation.