Ar+O₂+H₂ スパッタ In-Ga-Zn-O による Schottky ダイオード特性向上 Drastic improvement of Schottky diode properties by Ar+O₂+H₂ sputtered In-Ga-Zn-O 高知工大大学院¹,高知工大ナノ研² O(DC)曲 勇作¹,濵田 賢一朗¹,増田 健太郎¹,古田 守^{1,2}

Graduate School of Eng.¹, Kochi Univ. of Tech., Center for Nanotechnology², Kochi Univ. of Tech.

^{O(DC)}Yusaku Magari¹, Kenichiro Hamada¹, Kentaro Masuda¹, Mamoru Furuta^{1,2} E-mail: 216007n@gs.kochi-tech.ac.jp

【概要】In-Ga-Zn-O (IGZO)は、高い電界効果移動度(> 10 cm²V⁻¹s⁻¹)を有し、大面積均一性、室温 成膜可能などの特徴から、フレキシブルデバイスや光センサーへの応用が期待される。我々は前 回、反応性スパッタ法で成膜した酸化銀(Ag_xO)と、スパッタ成膜時に水素を導入した IGZO との IGZO/Ag_xO 酸化物ヘテロ界面において、良好な Schottky ダイオード(SDs)(整流比:1.7×10¹⁰, 障壁 高さ:1.17 eV, 理想因子:1.07)をプロセス温度 150℃で実現可能であることを報告した[1,2]。本記念 講演においては、IGZO/Ag_xO 界面での Schottky 障壁形成機構から、フレキシブル化に向けた IGZO SDs 低温プロセス技術について報告する。

【IGZO/Ag_xO 界面での Schottky 障壁形成機構】Fig. 1(a)に硬 X 線光電子分光法により得られた Ag および Ag_xO 状態密度を示す。Ag を酸化することでフェルミレベル近傍の浅い状態密度が減少 し、光電子収量分光法による仕事関数(*φ*_m)評価の結果からも、Ag を酸化することで*φ*_m が 4.7 eV(Ag) から 5.7 eV(Ag_xO)に約1 eV 増大することが明らかになった。この結果は、Ag_xO は酸化状態によ り*φ*_mを制御可能であることを示しており、Ag_xO を用いることで Fig. 1(b)に示すように IGZO との 界面に 0.96 eV のエネルギー障壁が形成できた。

【IGZO SDs の低温形成技術】Fig. 2(a)に 150℃熱処理前後における IGZO キャリア濃度(N_H)の成 膜水素流量比(R[H₂])依存性を示す。熱処理前(as-depo.)は R[H₂]増大に伴い、N_Hが大幅に増大した。 一方で、150℃熱処理後には、水素未導入試料(R[H₂]=0%)では N_Hが増大したのに対し、R[H₂]≧5% では N_Hが大幅に減少した。この結果より R[H₂]≧5%において低温熱処理により欠陥準位が減少し たことが示唆された。Fig. 2(b)に本手法(IGZO:H)および従来手法(IGZO)にて作製した SDs の電流-電圧特性を示す。IGZO:H は熱処理温度 150℃にも関わらず、逆方向電流が大幅に減少し、水素未 導入で 300℃熱処理をした試料同等の特性が得られた。今後は、硬 X 線光電子分光法や X 線吸収 微細構造解析により IGZO の電子構造を解析し、水素導入による欠陥補償メカニズムを検討する。

[2] 曲勇作 他、第 79 回応用物理学会秋季学術講演会 20p-234A-14.

【参考文献】 [1] S G M. Aman et al., Appl. Phys. Express, 11, 081101 (2018).

Fig.1. (a) DOSs of Ag and Ag_xO . (b) Schematic band diagram of Ag and Ag_xO contact to IGZO.

Fig.1. (a) $N_{\rm H}$ of the films deposited at various R[H₂] before and after annealing at 150 °C. (b) *J-V* characteristics of IGZO/Ag_xO Schottky diodes with various IGZO condition.