GaN:C 半絶縁層を用いた圧電駆動 GaN カンチレバーの共振特性

Resonance characteristics of piezoelectric GaN cantilever using carbon doped GaN semi-insulating layer

名大院工¹,名大未来研²,NIMS³,名大赤﨑記念研究センター⁴,名大 VBL⁵,

⁰山田 剛大¹, 安藤 悠人¹, 渡邊 浩崇², 古澤 優太², 出来 真斗^{1,5}, 田中 敦之^{2,3},

新田州吾²,本田善央²,須田淳^{1,2},天野浩^{2,3,4,5}

Dept. of Electronics., Nagoya Univ.¹, IMaSS², NIMS³, ARC⁴, VBL⁵,

^OT. Yamada¹, Y. Ando¹, H. Watanabe², Y. Furusawa², M. Deki^{1,5}, A. Tanaka^{2,3},

S. Nitta², Y. Honda², J. Suda^{1,2}, and H. Amano^{2,3,4,5}

E-mail:yamada.takehiro@a.mbox.nagoya-u.ac.jp

【概要】GaN MEMS (Micro-Electro-Mechanical-System)は宇宙空間や高温、高圧等の厳環境への応用が期待されている。^[1] GaN MEMS は Si やサファイア基板上にヘテロエピタキシャル成長して 作製したものが主流であるが、Si は 200℃以上ではリーク電流が非常に大きくなり電子素子とし て動作しなくなる。したがって、厳環境下において集積回路と一体化したデバイスの動作が困難 になり、GaN の厳環境への耐性を最大限生かすことができない。そのため、基板、構造層ともに GaN 単結晶で構成された GaN 単結晶 MEMS デバイスを作製することで、GaN の物性を最大限に 生かし、将来的に厳環境でも動作可能な電子デバイスと MEMS を融合させたデバイスの実現が期 待できる。以前の発表で PEC(Photo-Electro-Chemical)エッチングを用いて、GaN 基板上に成長させ た InGaN を選択的にエッチングすることで、GaN 単結晶カンチレバーが作製可能であると報告し た。^[2]本研究では、作製したカンチレバーの共振特性について報告する。

【実験及び結果】 +c 面の n 型 GaN 基板上に MOVPE 法によって In_{0.03}Ga_{0.97}N(380 nm), n⁺-GaN([Si] = 1×10¹⁸ cm⁻³, 200nm), Carbon doped GaN([C] = 1×10¹⁸ cm⁻³, 150 nm), n⁺-GaN ([Si] = 1 ×10¹⁸ cm⁻³, 50 nm)を成長させた。試料に対して ICP-RIE によってメサ構造の形成と電極形成のた めの電極露出エッチングを下層の n⁺-GaN 層まで行った。続いて EB 蒸着を用いて-c 面と+c 面に n 電極である Ti/Al/Ti/Au(20 nm/100 nm/30 nm/150 nm)を堆積した。その後 KOH 水溶液とフィルター を用いて波長 365 nm 以下の光をカットした紫外光で PEC エッチングを行った。この手法により、 メサの下の InGaN のみを選択的に横方向エッチングすることで、GaN 単結晶カンチレバーの作製 を行った。その構造を Fig.1 に示す。カンチレバーは上下非対称な n⁺GaN 層にすることで、圧電 効果によりカーボンドープ層に伸張歪が発生し、カンチレバーのビームに曲げモーメントが働く ように設計した。作製したカンチレバーの 2 つの電極間に DC バイアスと共に様々な周波数の交 流信号を入力し、レーザードップラー振動計を用いてカンチレバーの共振特性を測定した。なお、 測定は空気抵抗の影響を無視できる 4.0×10⁻³Pa 以下の真空下で行った。

カンチレバーの梁の長さを変えた際の共振周波数の変化の結果を Fig.2(a)に示す。また、梁の長 さが 60µm の共振特性を Fig.2(b)に示す。共振周波数の計算には、一般的に直方体構造のカンチレ バーに用いられている $f_r = \frac{\lambda n^2 t}{2\pi l^2 \sqrt{12}} \sqrt{\frac{E}{\rho}} (f_r: 共振周波数, E: ヤング率, \rho: 密度, t: 梁の厚さ, L: 梁の長さ,$ $<math>\lambda_n: 共振モードによる固有の値)を用いた。測定できたのは梁の長さが 50µm および 60µm のもの$ だけであったが、Fig.2(a)に示すように共振周波数の計算値におおよそ一致している。講演では、カンチレバーの作製プロセスやその他の評価についても報告を行う予定である。

^[2] 山田他, 応用物理学会第 67 回春季学術講演会, 13p-A302-8 (2020).

Fig.1. Structure of a Fabricated GaN cantilever

Fig.2. (a)Relationships between resonance frequency and beam length(b)Resonance characteristics of beam length 60µm cantilever