Discovery of gigantic magnetocaloric effect in HoB₂ guided by machine-learning.

Pedro Baptista de Castro^{1,2}, Kensei Terashima^{1,2}, Takafumi D Yamamoto^{1,2}, Zhufeng Hou³, Suguru

Iwasaki⁴, Hiroyuki Takeya¹, Yoshihiko Takano^{1,2}

NIMS¹, Univ. of Tsukuba², Chinese Acad. Sci³, Hokkaido Univ.⁴

E-mail: CASTRO.Pedro@nims.go.jp

Magnetic ordering in material causes a change in the entropy (ΔS_M), that ends up with a temperature change in solid when a magnetic field is applied or removed (ΔH). This is called the magnetocaloric effect, and it is one of the alternative pathss for the development of refrigeration devices other than the conventional gas-based ones [1]. The magnitude of ΔS_M tends to peak at the spontaneous magnetic ordering temperature of a material, such as Curie or

Néel temperature, and its maximum value given an applied ΔH strongly depends on the material. Since the discovery of gigantic magnetocaloric effect in materials such as Gd₅Si₂Ge₂ [2] and La(FeSi)₁₃ [3] an explosive increase in the search for materials which could exhibit such effect lead to the accumulation of magnetocaloric properties of a vast number of magnetic materials. However, it remains a challenge to the design of materials that can exhibit such a remarkable effect.

To solve this challenge, we constructed a machine learning model for the prediction of ΔS_M maximum purely based on the material composition. For this, we gathered the accumulated data of magnetocaloric materials (for instance, Ref [1]), and by using the collected data we trained the model for the prediction of ΔS_M given material composition

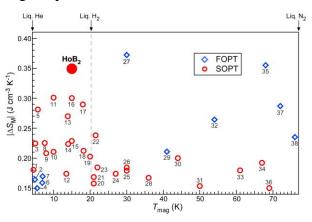


Figure 1 Comparison of the volumetric entropy change of HoB_2 with other materials. Taken from Ref. 5

and an applied Δ H. Then, we explored the text-mined database called MagneticMaterials [4] and used the obtained model in conjunction with the domain expertise to filter possible candidates for experimental verification. By this method, we found that HoB₂[5] ($T_{\rm C} = 15$ K), exhibits that highest volumetric entropy change (0.35 J cm⁻³ K⁻¹), to the best of our knowledge, of all known second-order phase transition materials in the temperature range 4.2 K ($T_{\rm LHE}$) < T < 77 K ($T_{\rm LN2}$).

In this talk, we will discuss the process of model building, the choice of compositional based features, the experimental data of HoB₂, and compare the results to other well known magnetocaloric materials in the same temperature range.

References:

[1] V. Franco, J. S. Blázquez, J. J. Ipus, J. Y. Law, L. M. Moreno-Ramírez, A. Conde, *Prog. Mater. Sci.* 93, 112 (2018).

[2] V. K. Pecharsky, K. A. Gschneidner, Phys. Rev. Lett. 78, 4494, (1997).

[3] B. G. Shen, J. R. Sun, F. X. Hu, H. W. Zhang, Z. H. Cheng, Adv. Mater. 21, 4545, (2009).

[4] C. J. Court and J. M. Cole, Sci. Data 5, 180111 (2018).

[5] P. B. de Castro, K. Terashima, T. D. Yamamoto, Z. Hou, S. Iwasaki, R. Matsumoto, S. Adachi, Y.

Saito, P. Song, H. Takeya and Y. Takano, NPG Asia Mater. 12, 35 (2020)