Eco-friendly AgBiS₂ Nanocrystal / ZnO Nanowire Heterojunction Solar Cells with Enhanced Carrier Collection

RCAST, UTokyo.¹, Graduate School of Arts and Sciences, UTokyo.², ° Yun Xiao,¹ Haibin Wang,¹ Naoyuki Shibayama,¹ Takaya Kubo,¹ Hiroshi Segawa^{1,2}

E-mail: ukubo@mail.ecc.u-tokyo.ac.jp

Solution-process compatibility and size-dependent bandgap tunability of colloidal quantum dots (CQDs) make them low-cost promising materials for next generation solar cells. Among CQD-based solar cells, devices formed with PbS CQDs and ZnO exhibit impressive performance. However, researches of eco-friendly CQDs-based solar cell are still limited. AgBiS₂ colloidal nanocrystals (NCs) with a wide absorption band (0.4-1.2 μ m) are one of the alternatives to PbS CQDs. However, the power conversion efficiencies (PCEs) of planar-type solar cells using AgBiS₂ NCs (ITO / ZnO dense layer / AgBiS₂ NC layer/ hole transport layers (eg. PTB7:MoOx) / Ag) have been at most approximately 6% mainly due to the short carrier diffusion length of AgBiS₂^[1].

In this work, we paid attention to nanowire (NW) structures, with the aim of elongation of carrier diffusion length, and we also applied widely used and less-expensive hole transport materials. We then fabricated NW-type solar cells (ITO / ZnO NW: AgBiS₂ mixture / AgBiS₂ overlayer / P3HT / Au) by using different ZnO NW lengths and the overlayer thicknesses to study charge collection in AgBiS₂ NW-type solar cells (NWSCs). ZnO NWs were synthesized by a hydrothermal method, and the length of ZnO NW was controlled by the reaction time ^[2]. As a reference, planar-type solar cells (NPSCs) using ZnO layers with different thicknesses were also constructed.

PCE values of NPSCs increase as AgBiS₂ layer becomes thicker and reach to a maximum value of 2.06% at 100 nm. And PCE then decreases with thickening AgBiS₂ layers due to the limited carrier diffusion length of AgBiS₂ layer. Whereas in the case of NWSCs, the highest PCE of 4.14% is obtained at an overlayer thickness of 120 nm, which is close to the optimal

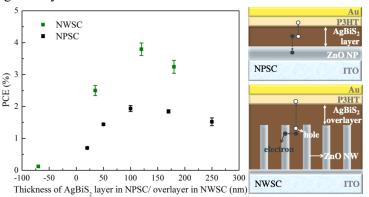


Figure 1. PCE dependence of thickness of AgBiS₂ layer in NPSC and thickness of AgBiS₂ overlayer in NWSC (with the same length of ZnO NW) (left); Scheme of structures of NPSC and NWSC (right).

thickness of planar cell, the performance improvement of NWSC is due to the ZnO NW / AgBiS₂ NC mixture region. Moreover, the NWSC gives a maximum EQE value of 80%, twice as high as the EQE value of NPSC-41%. This indicates that ZnO NW / AgBiS₂ NC mixtures are useful to achieve efficient light harvesting and efficient carrier collection simultaneously. A J_{sc} of 20.54 mA/cm² is obtained for NWSC, which is higher than previously-reported AgBiS₂ solar cells (eg. $J_{sc} = 15.10 \text{ mA/cm}^2$, $V_{oc} = 0.46 \text{ V}$, FF = 57%, and PCE = 3.99% ^[1]). In addition, at least 3-month air stability has been confirmed in NWSCs.

[1] M. Bernechea, N. C. Miller, G. Xercavins, et al. Nature Photonics 2016, 10, 521.

[2] H. Wang, T. Kubo, J. Nakazaki, T. Kinoshita, H. Segawa. J. Phys. Chem. Lett. 2013, 4, 2455. S