Coherent Acoustic Phonons and Ultrafast Carrier Dynamics in Hetero-Epitaxial BaTiO₃-BiFeO₃ Films and Nanorods

Rathsara R. H. H. Mudiyanselage¹, Brenden A. Magill¹, John Burton¹, Moira Miller¹, Joseph Spencer¹, Kiara McMillan¹, Giti A. Khodaparast¹, Min Gyu Kang², DeepamMaurya², Shashank Priya^{2,3}, Jade Holleman^{4,5}, Steve McGill^{4,5}, and Christopher J. Stanton⁶ rathsara@vt.edu

¹Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA,

²Center for Energy Harvesting Materials and Systems (CEHMS) and Bio-inspired Materials and Devices Laboratory (BMDL), Virginia Tech, Blacksburg, VA 24061, USA,

³Materials Research Institute, Penn State, University Park, PA 16802, USA,

⁴National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA,

⁵Physics Department, Florida State University,77 Chieftain Way, Tallahassee, FL 32306, USA,

⁶Department of Physics, University of Florida, Gainesville, FL 32611, USA

Abstract: The improved coupling between electric, magnetic, optical, and structural order parameters found in multiferroic BaTiO₃-BiFeO₃, generate the desire to explore novel functionalities in these lead-free systems. In order to obtain information to develop high speed multifunctional devices, we performed time-resolved differential reflectivity measurements of (1-x) BaTiO₃ -(x) BiFeO₃, with x = 0.725 and BaTiO₃-BiFeO₃ nanorods. We report a quantitative study of ultrafast carrier dynamics in BaTiO₃-BiFeO₃, by diffusion of the photoexcited carriers away from the surface and that the ambipolar diffusion constant is below 1-2 cm²/s. We also report the detection of coherent acoustic phonons(CP) in both film and nanorod samples at lower temperatures (100 K). In the film sample, we estimated the CP frequency to be ~ 27 GHz. In the Nanorod sample, we observed a higher frequency oscillation and a lower frequency oscillation with a frequency of ~ 33 GHz and 8 GHz. We attributed Higher frequency case. The lower frequency is close to a theoretically predicted magnon frequency in BFO, but the strength of this oscillation only had a very weak magnetic field dependence. Another explanation for this feature could be multiple reflections of the acoustic phonons at the Pt interfaces due to the large acoustic impedance mismatch.