High temperature alternating current poling for 0.24Pb(In_{1/2}Nb_{1/2})O₃-0.46Pb(Mg_{1/3}Nb_{2/3})O₃-0.30PbTiO₃ single crystals 上海応用技術大¹,富山県大² ^{O(M2C)}羅 聡^{1,2},孫 億琴²,唐木 智明^{2*},山下 洋八²,徐 家躍¹ Shanghai Inst. Tech.¹, Toyama Pref. Univ.², ^{o(M2C)}C. Luo^{1,2}, Y. Sun², T. Karaki^{2*}, Y. Yamashita², J. Xu¹

*E-mail: chen@pu-toyama.ac.jp

Recently, an increasing number of researchers have focused on Pb(In_{1/2}Nb_{1/2})O₃-Pb(Mg_{1/3}Nb_{2/3})-PbTiO₃ (PIN-PMN-PT) ternary system single crystal (SC) possessing higher phase change temperature (*T*pc) > 90 °C, which can be used in wider temperature range comparing with traditional PMN-*x*PT binary system SC. In this work, we have investigated high temperature alternate current poling (ACP) on [001] oriented 0.24PIN-0.46PMN-0.30PT (PIMN-0.30PT) SC manufactured by continuous-feeding Bridgman (CF BM) method which can partly eliminate the compositional segregation compared with the traditional one charge Bridgman method. High dielectric permittivity ($\varepsilon^{T}_{33}/\varepsilon_0$) of 6730 and piezoelectric constant d_{33} of 2240 pC/N, which were both 24% larger than those of direct current poling (DCP) using same poling voltage, was obtained by the ACP condition of 4 kVrms/cm, 10 Hz, and 12 cycles at 90 °C. Temperature dependence of these $\varepsilon^{T}_{33}/\varepsilon_0$ (Fig. 1) and phase analysis by X-ray diffraction (XRD) (Fig. 2) of these ACP and DCP SCs showed clear different properties. We concluded that the best ACP poling temperature for CF BM PIMN-0.30PT SC is 90 °C which is almost as same as its *T*pc.

#	Condition	$\varepsilon^{\mathrm{T}}_{33}/\varepsilon_{0}$	$\varepsilon^{s}_{33}/\varepsilon_{0}$	Loss (%)	<i>k</i> t (%)	Nt (Hz m)	<i>k</i> ₃₃ (%)	<i>d</i> ₃₃ (pC/N)
1	ACP-70 °C	6660	670	0.30	57.3	1900	94.9	2130
2	ACP-90 °C	6730	680	0.27	58.0	1898	94.8	2240
3	ACP-110 °C	5810	770	0.32	56.4	1898	93.2	1800
4	ACP-130 °C	5190	840	0.42	53.7	1896	91.6	1790
5	DCP-50 °C	5440	650	0.51	57.8	1890	93.8	1810

Table I. Electrical properties of ACP with different temperatures and DCP for PIMN-0.30PT SCs.

Fig. 1. Temp. dependence of $\varepsilon^{T}_{33}/\varepsilon_0$ of ACP (90°C) and DCP.

AC-90 °C

-DC-50 °C

99. 69

99.6

99.7

99.8