Ultrafast pump-probe spectroscopy of 1D van der Waals heterostructures

<u>M. Burdanova (D)</u>¹, Reza Kashtiban¹, Michael Staniforth¹, Jeremy Sloan¹, Yongjia Zheng³, Rong Xiang³,

Shohei Chiashi³, Jack M. Woolley¹, Emily Sakamoto-Rablah¹, Xue Xia¹, Matthew Broome¹, Anton Anisimov⁴,

Esko I. Kauppinen⁵, Shigeo Maruyama³, James Lloyd-Hughes¹

¹University of Warwick, Department of Physics, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom.

² Department of Applied Physics, Aalto University School of Science, Espoo 15100, FI-00076 Aalto, Finland.

³Departure of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan. ⁴Canatu Ltd., Vantaa FI-01720, Finland.

⁵Department of Applied Physics, Aalto University School of Science, Espoo 15100, FI-00076 Aalto, Finland. Email: m.burdanova@warwick.ac.uk

A novel class of 1D nanomaterials was created by building radial heterostructures, such as wafer scale, free-standing thin films of MoS₂ nanotubes grown outside BN nanotubes and carbon nanotubes [1, 2]. We examined the optoelectronic properties of atomically thin 1D van der Waals heterostructures comprising the single-walled carbon nanotubes wrapped by insulating BN layers and MoS₂ outer layers (MoS₂@BN@CNT) as presented in Fig. 1b. Here we will present the equilibrium properties of such materials (through optical absorption, Raman scattering, photoluminescence, FTIR and THz spectroscopy studies), and the dynamical properties of excitons and free charges (via optical pump-optical probe, and optical pump – THz probe spectroscopy).

The radial heterostructure showed a unique THz photoconductivity (Fig. 1c) that dynamically changed from anomalous (positive Δ T/T, corresponding to negative photoconductivity) to normal (positive), driven by mobile free charges in the MoS₂ with a mobility comparable to high-quality 2D MoS₂. In addition, optical pump–white light probe spectroscopy revealed that excitons are the primary initial photoproduct in the MoS₂ NT of the present vdW heterostructure. We discuss the co-existence of free charges and excitons in the heterostructure.

Figure 1: a) Atomic STEM ADF image of C@BN@MoS₂NT heterostructure; b) model of C@BN@MoS₂NT heterostructure; c) The switch from $\Delta T/T>0$ at early times to $\Delta T/T<0$.

References:

1. <u>M. G. Burdanova</u> *et al.* Nano Lett. **20** 3560 (2020).

2. R. Xiang *et al.*, Science **367** 537 (2020).