カーボンナノチューブを組み込んだナノ構造体の作製

Fabrication of Carbon Nanotubes Nanostructures

名大理¹, 東大工², 埼玉大理³, 物材機構⁴, 産総研⁵, ^O(M1)中嶋春菜¹, (D)堀田 貴都¹, 井ノ上 泰輝², 千足 昇平², 上野 啓司³, 液邊 賢司⁴, 谷口 尚⁴, 丸山 茂夫^{2,5}, 北浦 良¹ Nagoya Univ. ¹, The Univ. of Tokyo², Saitama Univ. ³, NIMS ⁴, AIST⁵, ^OHaruna Nakajima¹, Takato Hotta¹, Taiki Inoue², Syohei Chiashi², Keiji Ueno³, Kenji Watanabe⁴, Takashi Taniguchi⁴, Shigeo Maruyama^{2,5}, Ryo Kitaura¹ E-mail: r.kitaura@nagoya-u.jp

ナノマテリアルを自在にアセンブリして生まれるナノ構造体は、ナノサイエンス・ナノテクノロジーにおいて中心的な役割を果たす。これら種々の機能性ナノ構造体において、極細の半導体/金属チューブであるカーボンナノチューブ (Carbon Nanotube, CNT) は、究極の微細半導体チャネルおよび局所電場の印加・プローブなどとして不可欠な構成要素である。本研究では、CNT を組み込んだナノ構造体の自在構築法の確立を目指し、CNT スタンプとマイクロマニピュレーション

を組み合わせた簡便な CNT 配置法の開発,特に CNT の方向・本数を制御し つつマイクロメートルの精 度での位置選択的な配置を 目指した検討を行った。

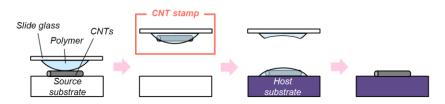


Fig 1. A schematic diagram of experimental procedure

となく、格子状 CNT 構造体が容易に作製できることを明らかにした (Fig. 2)。

確立した転写法は二次元物質にも適用可能であり、この手法の応用例として、CNTをローカルゲートに組み込んだ MoSe2 積層デバイスの作製を行った。この構造体ではチューナブルな荷電励起子の一次元閉じ込め系が実現できる。当日は転写法、デバイス作製の詳細について説明する。

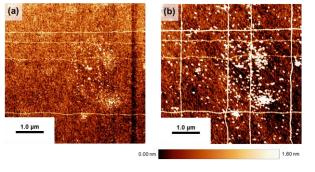


Fig. 2 AFM images of CNTs transferred on a SiO2/Si substrate. (a) laterally aligned CNTs made by single stamp transfer process and (b) a rectangular pattern of CNTs made by two stamp transfer processes.