
酸素スポンジ SrCoO2.5 薄膜の固体電気化学的プロトン化/酸化

Solid-State Electrochemical Protonation/Oxidation of Oxygen Sponge SrCoO_{2.5} Films 北大院情報¹,東大総研²,釜山大物理³,北大電子研² ^O(D)楊 倩¹,馮 斌²,幾原 雄一², ジン ヒョンジン³,ジョ ヘジュン^{1,4},太田 裕道^{1,4}

IST-Hokkaido U.¹, U. Tokyo², Pusan Nat'l U.³, RIES-Hokkaido U.⁴ ^oQian Yang¹, Bin Feng², Yuichi Ikuhara², Hyoungjeen Jeen³, Hai Jun Cho^{1,4}, Hiromichi Ohta^{1,4}

E-mail: yangqian@eis.hokudai.ac.jp

Due to the flexibility of the valence state of cobalt ion, brownmillerite $SrCoO_{2.5}$ can be protonated/oxidized by an electrochemical reaction with H^+ / OH^- ions. Owing to the electrochemical protonation / oxidation, the physical properties of SrCoO_{2.5} can be modulated from antiferromagnetic insulator (SrCoO_{2.5}, Co³⁺) to ferromagnetic insulator (HSrCoO_{2.5}, Co²⁺) / ferromagnetic metal (SrCoO₃, Co⁴⁺).^[1,2] Further, the color of SrCoO_{2.5} can be modulated from colorless transparent (Co²⁺) to brown (Co³⁺) and black (Co⁴⁺).^[2] To utilize these changes in practical device applications, the solid-state device is favorable compared to liquid-state devices. In 2016, Katase et al. demonstrated electrochemical Redox reaction between SrCoO_{2.5} and SrCoO₃ using amorphous NaTaO₃ film as the solid-electrolyte.^[3] However, there is no report on the solid-state protonation/deprotonation reaction between SrCoO_{2.5} and HSrCoO_{2.5}. Here we demonstrate that solid-state electrochemical protonation/deprotonation of SrCoO_{2.5} for the first time. We used mesoporous amorphous C12A7 (CAN) film as the solid electrolyte.^[4] We fabricated two-terminal thin-film device composed of (gate electrode) ITO / CAN / SrCoO_{2.5} / (bottom electrode) Nb:SrTiO₃ on (001) SrTiO₃ substrate. When positive 10 V was applied as the gate voltage, the color of the $SrCoO_{2.5}$ became colorless transparent. The XRD pattern of the resultant film revealed the formation of HSrCoO_{2.5} phase. The provided electron density was ~1.5 \times 10²² cm⁻³, which corresponds well with the proton concentration in HSrCoO_{2.5}. In addition, we succeeded the electrochemical oxidation of SrCoO2.5 into SrCoO3. These results indicate that the CAN film can be utilized as the solid electrolyte in the solid-state electrochemical protonation/oxidation of SrCoO_{2.5} films (Fig.).

Fig. Solid-state electrochemical protonation/oxidation of oxygen sponge $SrCoO_{2.5}$ film. We performed protonation/deprotonation and oxidation/reduction of the $SrCoO_{2.5}$ layer using CAN as the solid electrolyte.

References

[1] H. Jeen et al., Nat. Mater. 12, 1057 (2013).
[2] N. Lu et al., Nature 546, 124 (2017).
[3] T. Katase et al., Adv. Electron. Mater. 2, 1600044 (2016).
[4] H. Ohta et al., Nat. Commun. 1, 118 (2010).