Analytical capabilities on FIB instruments using SIMS: applications, current developments and prospects

O. De Castro¹, J.-N. Audinot¹, A. Biesemeier¹, Q. H. Hoang¹, T. Wirtz¹

Advanced Instrumentation for Ion Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxembourg¹

E-mail: olivier.decastro@list.lu

Secondary Ion Mass Spectrometry (SIMS) is an extremely powerful technique for analyzing surfaces, owing in particular to its ability to detect all elements from H to U and to differentiate between isotopes, its excellent sensitivity and its high dynamic range. SIMS analyses can be performed in different analysis modes: acquisition of mass spectra, depth profiling, 2D and 3D imaging. Adding SIMS capability to FIB instruments offers a number of interesting possibilities, including highly sensitive analytics, in-situ process control during patterning and milling, highest resolution SIMS imaging (~10 nm), and direct correlation of SIMS data with data obtained with other analytical or imaging techniques on the same instrument, such as high resolution SE images or EDS spectra [1,2].

Past attempts of performing SIMS on FIB instruments were rather unsuccessful due to unattractive detection limits, which were due to (i) low ionization yields of sputtered particles, (ii) extraction optics with limited collection efficiency of secondary ions and (iii) mass spectrometers having low duty cycles and/or low transmission. In order to overcome these limitations, we have investigated the use of different primary ion species and of reactive gas flooding during FIB-SIMS and we have developed compact high-performance magnetic sector mass spectrometers operating in the DC mode with dedicated high-efficiency extraction optics. We installed such SIMS systems on different FIB based instruments, including the Helium Ion Microscope [3-5], a FIB-SEM DualBeam instrument and the npSCOPE instrument, which is an integrated Gas Field Ion Source enabled instrument combining SE, SIMS and STIM imaging with capabilities to analyse the sample under cryo-conditions [6].

Here, we will review the performance of the different instruments with a focus on new developments such as cryocapabilities and new detectors allowing parallel detection of all masses, showcase methodologies for high-resolution 3D chemical imaging, present a number of examples from various fields of applications (nanoparticles, battery materials, photovoltaics, micro-electronics, tissue and sub-cellular imaging in biology, geology,...) and give an outlook on new trends and prospects.

[1] T. Wirtz, P. Philipp, J.-N. Audinot, D. Dowsett, S. Eswara, Nanotechnology 26 (2015) 434001

[2] F. Vollnhals, J.-N. Audinot, T. Wirtz, M. Mercier-Bonin, I. Fourquaux, B. Schroeppel, U. Kraushaar, V. Lev-Ram,

M. H. Ellisman, S. Eswara, Anal. Chem. 89 (2017) 10702

[3] D. Dowsett, T. Wirtz, Anal. Chem. 89 (2017) 8957

[4] T. Wirtz, D. Dowsett, P. Philipp, Helium Ion Microscopy, ed. by G. Hlawacek, A. Gölzhäuser, Springer, 2017

[5] T. Wirtz, O. De Castro, J.-N. Audinot, P. Philipp, Ann. Rev. Anal. Chem. 12 (2019)

[6] This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No. 720964.