L10-FeNi films with a large degree of order and uniaxial magnetic anisotropy fabricated by denitriding epitaxial FeNiN films

IMR, Tohoku Univ.¹, CSRN, Tohoku Univ.², DENSO CORPORATION³, JASRI⁴,

Dept. Mater. Process Eng., Nagoya Univ.⁵, Dept. Appl. Phys., Univ. of Tsukuba⁶, CSIS, Tohoku Univ.⁷

°Keita Ito^{1,2}, Masahiro Hayashida¹, Takahiro Nishio³, Sho Goto³, Hiroaki Kura³,

Tomoyuki Koganezawa⁴, Masaki Mizuguchi⁵, Yusuke Shimada¹, Toyohiko J. Konnno¹,

Hideto Yanagihara⁶, Koki Takanashi^{1,2,7}

E-mail: itok@imr.tohoku.ac.jp

Ferromagnetic materials possessing large uniaxial magnetic anisotropy energy (K_u) and composed of earth abundant elements are required in order to realize the next-generation permanent magnets. We have focused on the L1₀-ordered FeNi alloy as a rare-earth free high K_u ferromagnetic material [1]. Recently, the synthesis of polycrystalline L1₀-FeNi powder by denitriding FeNiN powder was reported, and a degree of order (S) of 0.71 was achieved [2]. However, the exact K_u value of L1₀-FeNi formed by the denitriding method is still unclear, and the evaluation of K_u using a single-crystal L1₀-FeNi is required. In this study, we grew epitaxial FeNiN films by molecular beam epitaxy and fabricated L1₀-FeNi films by nitrogen topotactic extraction, and characterized their *S* and K_u values.

20 nm-thick FeNiN films were grown on SrTiO₃(001) substrates at 200, 250, and 350 °C by supplying Fe, Ni, and radio-frequency N₂ plasma, simultaneously [3]. Denitriding was performed by *ex-situ* furnace annealing at 300 °C for 4 h under an H₂ gas flow rate of 1 L/min at ambient pressure. Structure of the samples was characterized by x-ray diffraction measurements using Cu-K α radiation and synchrotron radiation (hv = 7.11 keV), and cross-sectional scanning transmission electron microscope (STEM) measurements. Magnetization curves were measured by vibrating sample magnetometer at room temperature, and the $K_{\rm u}$ value was estimated by magnetic torque measurements.

The epitaxial L1₀-FeNi films oriented with the *a*-axis perpendicular to the film plane having two variants with the orthogonal in-plane *c*-axes are fabricated. For the sample grown at 350 °C, the *S* and K_u values are evaluated to be 0.87 and 5.9×10^5 J/m³, respectively. In spite of the large *S* value exceeding those reported previously [1,2], the K_u value is modestly high. The exchange length of L1₀-FeNi (3.2 nm) is comparable to the variant sizes of our samples estimated by the STEM measurements. This strongly suggests that the obtained macroscopic K_u value is smaller than the actual K_u of each variant [4].

This work was supported by the Future Pioneering Program "Development of magnetic material technology for high-efficiency motors" (Proposal No. JPNP14015) commissioned by the New Energy and Industrial Technology Development Organization, Japan. The synchrotron radiation XRD was conducted at the BL46XU of SPring-8 with the approval of JASRI (Proposal No. 2019A1802).

K. Takanashi *et al.*, J. Phys. D: Appl. Phys. **50**, 483002 (2017). [2] S. Goto *et al.*, Sci. Rep. **7**, 13216 (2017).
K. Ito *et al.*, J. Magn. Soc. Jpn. **43**, 79 (2019). [4] K. Ito *et al.*, Appl. Phys. Lett. **116**, 242404 (2020).

09-060