Formation of ordered phase of CoPt with self-similar fractal-like voids on Al₂O₃(0001) substrates

°Ryo Toyama¹, Shiro Kawachi^{2,3}, Jun-ichi Yamaura^{2,3}, Youichi Murakami^{2,3}, Hideo Hosono², and Yutaka Majima^{1,2}

¹ Laboratory for Materials and Structures, Tokyo Institute of Technology, ² Materials Research Center for Element Strategy, Tokyo Institute of Technology, ³ Institute of Materials Structure Science, KEK E-mail: toyama.r.ab@m.titech.ac.jp

Ordered phases of CoPt, especially L_{10} -ordered CoPt, have been studied extensively for application to spintronic devices such as magnetoresistive random access memory and ultrahigh-density hard disk drives owing to their strong perpendicular magnetocrystalline anisotropy and large coercivity (H_c). Recently, we reported the formation of L_{10} -ordered CoPt on Si/SiO₂ substrates using electronbeam (EB) evaporation and rapid thermal annealing (RTA).¹⁾ Graded films consisting of L_{12} -ordered CoPt₃, L_{10} -ordered CoPt, and L_{12} -ordered Co₃Pt were found to be formed during the interdiffusion of equiatomic Pt/Co bilayer thin films with a Ti underlayer by RTA at 800 °C, where the films showed an in-plane H_c of 2.1 kOe.¹⁾ We also reported the Ti underlayer effect on the ordering of CoPt in equiatomic (Co/Pt)₄ multilayer thin films on Si/SiO₂ substrates.²⁾ In the film without a Ti underlayer after RTA at 900 °C, L_{10} -ordered CoPt with an isolated round grain structure was confirmed, showing an in-plane H_c of 2.7 kOe.²⁾ In contrast, in the film with a Ti underlayer after RTA at 900 °C, L_{12} -ordered CoPt₃ was confirmed together with Co-rich A_1 -disordered CoPt, which exhibited an angular-outlined continuous film structure, showing an in-plane H_c of 500 Oe.²⁾

In this study, we report the formation of ordered phase of CoPt in $(Co/Pt)_4$ multilayer thin films with a Ti underlayer on single-crystal Al₂O₃(0001) substrates by RTA. Equiatomic [Co (1.2 nm)/Pt (1.6 nm)]₄ multilayer thin films with a Ti underlayer (3.0 nm) were fabricated on Al₂O₃(0001) substrates by EB evaporation and were annealed by RTA at 900 °C. The crystal structure and surface morphology were characterized by grazing incidence X-ray diffraction (GI-XRD) and scanning electron microscope (SEM), respectively. The ordered phase of CoPt was confirmed in the film after RTA by GI-XRD. The SEM image of the film after RTA is shown in Fig. 1, where the dark and bright regions correspond to CoPt and Al₂O₃(0001) surface, respectively. The self-similar fractal-like voids were clearly observed (bright regions in Fig. 1), which is apparently different surface morphology from that of the films with the Ti underlayer on Si/SiO₂ substrates in our previous study.²)

This study was partially supported by MEXT Elements Strategy Initiative to Form Core Research Center (Grant No. JPMXP0112101001).

- R. Toyama, S. Kawachi, S. Iimura, J. Yamaura, Y. Murakami, H. Hosono, and Y. Majima, *Mater. Res. Express* 7, 066101 (2020).
- R. Toyama, S. Kawachi, J. Yamaura,
 Y. Murakami, H. Hosono, and Y. Majima,
 Jpn. J. Appl. Phys. 59, 075504 (2020).

Fig. 1. SEM image of $(Co/Pt)_4$ multilayer thin films with Ti underlayer on $Al_2O_3(0001)$ substrates by RTA at 900 °C. The dark regions correspond to CoPt, whereas the bright regions correspond to $Al_2O_3(0001)$ surface.