高純度オゾンを用いた低温 ALD Al₂0₃ 膜の性質

Properties of low-temperature ALD Al₂O₃ film by high purity ozone 明電ナノプロセス・イノベーション ¹、産総研 ²

O萩原 崇之¹, 阿部 綾香¹, 亀田 直人¹, 中村 健², 野中 秀彦² MEIDEN NANOPROCESS INNOVATIONS INC.¹, AIST²,

OTakayuki Hagiwara¹, Ayaka Abe¹, Naoto Kameda¹, Ken Nakamura², and Hidehiko Nonaka² E-mail: hagiwara-tak@npi.meidensha.co.jp

半導体デバイスの高集積化に伴う金属酸化物薄膜の精密な膜厚制御と成膜プロセスの低温化の要求に対し原子層堆積(Atomic Layer Deposition: ALD)法が注目されている。ALD は原料ガスと酸化種を交互に基板表面へ供給することで原子層を一層ずつ成膜する手法であり、酸化種として H_2O 、 O_2 プラズマ、オゾン (O_3) が使用される。通常の O_3 は他の酸化種に比べて表面反応が起こりにくく[1]、 O_3 濃度が低い(10%以下)ため効率的なガス供給ができていないことがその要因と考えられる。今回、 $\sim 100\%$ 濃度の O_3 (Pure Ozone:PO)[2]を 150% 以下の ALD (PO-ALD) に適用を試みた。プリカーサーとしてトリメチルアルミニウム(TMA)を用い Al_2O_3 膜を成膜し評価した。

図 1 は PO-ALD の Growth per cycle (GPC) の温度依存性である。基板は Si ウエハであり、GPC は各温度にて成膜したサイクル数と分光エリプソメータで得た Al_2O_3 膜厚から算出した。GPC は $1.6\sim1.9$ Å/cycle であり、150 ℃基板の O_2 プラズマ ALD、6%濃度 O_3 の ALD[1]と同様の GPC を実現した。特に 150 ℃以下の PO-ALD でも、 O_3 ガスの基板表面への効率的な供給と O_3 本来の高い酸化力の発揮が示されている。図 2 は Al_2O_3 膜の I-V 特性である。I-V 測定は p 型 Si ウエハ上に 60nmの Al_2O_3 膜を成膜後、 ϕ 500 μ m 面積の Al 電極を蒸着させ MIS キャパシタを形成し評価した。 3MV/cm 以下の漏れ電流密度は、いずれの成膜温度においても検出限界(1.0×10^8 Å/cm²)以下であり、 O_2 プラズマ ALD にて成膜した Al_2O_3 [3]と同等の優れた絶縁性を有している。 O_2 プラズマ-ALD は、枚葉処理に限られるが PO-ALD は 150 ℃以下では O_3 の長寿命により複数基板の一括成膜処理も可能であり生産性に優れる。発表では I-V 以外の被覆特性等についても報告する。

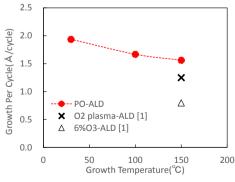


Fig.1 Al₂O₃ film GPC on Si(100)

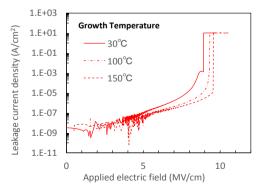


Fig.2 Al₂O₃ film I-V measurement(Si/Al₂O₃/Al)

- [1] Vikrant R. Rai et al, Langmuir, 28, 350-357(2012)
- [2] S. Ichimura, et al, J. Vac. Sci. Technol., **A22**, 1410-1414 (2004)
- [3] 生田目 他, 表面と真空, **61** No.5, 280-285 (2018)