Optical properties improvement of lightly and heavily boron-doped BaSi₂ by atomic H passivation

Univ. Tsukuba 1 oZ. Xu1, K. Toko1, T. Suemasu1

E-mail: xudaodao0812@hotmail.com

Introduction

Semiconducting BaSi₂ has many advantages for solar cell applications, such as a suitable band gap of 1.3 eV, a large absorption coefficient of 3×104 cm-1 at 1.5 eV, and a large minority-carrier diffusion length of ca. 10 µm [1]. The first-principle calculation predicts Si vacancies to be most likely to occur as point defects in BaSi₂ regardless of Si rich or Si poor growth conditions and lead to the degradation of the minority-carrier properties of BaSi₂[2]. Therefore, we try to passivate defects in undoped BaSi₂ films by atomic hydrogen (H). The photoresponsivity of undoped BaSi₂ films is enhanced markedly by irradiation of atomic H after the growth of BaSi₂ films for 15 min thanks to the improvement of minority carrier lifetime [3]. The basic solar cell structure is *pn* junction. Thus, passivation of impurity-doped p- or n-BaSi₂ films is of particular importance. In this study, we investigate the effect of atomic H passivation on the photoresponsivity property of lightly ($p = 7 \times 10_{16}$ cm-₃) and heavily ($p = 3 \times 10_{18}$ cm-₃) boron (B) -doped p-BaSi₂.

Experiment

Approximately 500 nm-thick B-doped BaSi2 epitaxial films were formed at 600 °C on the lowresistivity (ρ) Czochralshi (Cz) n+-Si(111) substrate ($\rho = 0.01 \ \Omega$ cm) for photoresponsivity measurement. The crucible temperature of B (T_B) was set at 1100 °C and 1230 °C, wherein the hole concentration (p) were 7 × 10₁₆ cm-3 and 3 × 10₁₈ cm-3, respectively. Second, we supplied the atomic H by using a plasma generator with various H supply durations (t_H) at the same substrate temperature of the first step. Here, the power of plasma generator was set at 10 W and the vacuum level was kept at 10-3 Pa. Finally, a 3 nm-thick amorphous Si (a-Si) layer was formed to prevent oxidation. Reference sample was undoped BaSi2 films formed with $t_H = 15$ min, which showed the highest photoresponsivity among undoped BaSi2 films. For the photoresponsivity measurement, 80 nmthick indium-tin-oxide (ITO) electrodes and 150 nm-thick Al were sputtered on the front and back side of samples, respectively. A bias voltage of 0.3 V was applied to the front ITO electrode with respect to the Al electrode to extract photogenerated electrons at the front ITO electrode.

Results & Discussions

Figure 1 shows the *t*H dependences on photoresponsivity of lightly B-doped BaSi₂ from samples 1-4. The photoresponsivity of samples with *t*H of 5 and 10 min was significantly improved and reached a maximum of approximately 4 A/W at a wavelength of 800 nm. This value is almost twice as large as the value of the reference. We attribute this enhancement to defect reduction in BaSi₂ not only by atomic H but also by B. The photoresponsivity was degraded over the wide wavelength range at *t*H = 15 min. We speculate that more defects are generated in BaSi₂ films by excess H atoms. Figure 2 shows the photoresponse spectra of heavily B-doped BaSi₂ films from samples 5-7, where *t*H was varied in the range of 0-5 min. In contrast with samples 1-4, the photoresponsivity exhibited degradation with increasing *t*H, showing that H passivation is not suitable to improve the photoresponsivity of heavily B-doped BaSi₂ films. The photoresponsivity of sample 1 is lower than sample 5, indicating that lightly B-doped BaSi₂ has more defects than heavily B-doped BaSi₂.

Reference [1] T. Suemasu, *et al.*, J. Phys. D. Appl. Phys. **50** (2017) 023001. [2] M. Kumar, *et al.*, J. Mater. Chem. A **5** (2017) 25293. [3] Z. Xu, *et al.*, Phys. Rev. Mater. **3** (2019) 065403.

Fig. 1. Photoresponsivity spectra of 500 nm-thick lightly B-doped BaSi₂ layers passivated by atomic H with various $t_{\rm H}$.

Fig. 2. Photoresponsivity spectra of 500 nm-thick heavily B-doped BaSi₂ layers passivated by atomic H with various $t_{\rm H}$.